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Abstract

We calculate the EEHG bunching factor with account of
the collisions and derive a simple scaling relation for the
strength of the effect. Our estimates show that collisions
become a limiting factor in EEGH seeding for large har-
monic numbers.

INTRODUCTION

Echo-enabled harmonic generation (EEHG) for FEL
seeding uses two undulator-modulators and two chicanes to
introduce a fine structure into the beam longitudinal phase
space which, at the end of the system, transforms into a
high harmonic modulation of the beam current [1, 2]. As a
result of this phase space manipulation the energy distribu-
tion function after the first chicane becomes a rapidly mod-
ulated function of energy, with the scale of the modulation
of the order of the initial energy spread of the beam divided
by the EEHG harmonic number. Small-angle Coulomb col-
lisions between the particles of the beam (also known as in-
trabeam scattering) tend to smear out this modulation and
hence to suppress the beam bunching. In this paper we cal-
culate the EEHG bunching factor with account of the col-
lisions and derive a simple scaling relation for the strength
of the effect.

It is well known that the dominant process in Coulomb
collisions is a small-angle scattering, which leads to a dif-
fusion process in the momentum space. We first derive the
diffusion coefficient for this process in the beam frame us-
ing an approximation that the longitudinal temperature of
the beam is much smaller than the transverse one. We then
make a Lorentz transformation into the laboratory frame,
and calculate the effect of the Coulomb collisions on the
bunching factor in the EEGH seeding.

LORENTZ TRANSFORMATION OF A
GAUSSIAN DISTRIBUTION FUNCTION

Consider a relativistic beam with the nominal energy
E0 = γmec2 (γ � 1) moving along a straight path in z di-
rection. Assuming a Gaussian distribution function of the
beam in the lab frame, we write it as follows

f (px, py, pz) =
n0

(2π)3/2p2
0σ

2
θ
σpz

(1)

× e−(p
2
x+p2

y )/2p2
0σ

2
θe−(pz−p0)2/2σ2

pz ,
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where n0 is the beam density (number of particles per
unit volume), px and py are the transverse components of
the momenta, σθ is the rms angular spread of the beam,
p0 = E0/c is the nominal momentum, and σpz is the rms
spread of the longitudinal momentum in the beam. The
rms spreads of the transverse components of the momen-
tum σpx and σpy are assumed equal to each other and are
written as p0σθ, where σθ is the rms angular spread of the
beam. Note that in the limit when σpz/p0 � σ2

θ
, which

we will assume here (see numerical estimation at the end
of this section), one can identify cσpz with the rms energy
spread in the beam σE

1. In what follows we will use the
relative energy η = (E − E0)/E0, and correspondingly the
rms spread ση = σE/E0 and replace σpz in the distribution
function (1) by p0ση.

In order to obtain the distribution functionF in the beam
frame (moving with velocity p0/c along z) one needs to
use the Lorentz transformation for the momenta, and also
take into account that the particle density in the beam frame
is γ times smaller than in the lab frame. In addition, we
will assume that particles’ velocities in the beam frame are
non-relativistic. To simplify equations in what follows we
will use the same notations px, py and pz for the momenta
components in the beam frame. A simple calculation gives

F (px, py, pz) =
N

(2πme)3/2T⊥T
1/2
‖

(2)

× e−(p
2
x+p2

y )/2meT⊥e−p2
z /2meT‖ ,

where N = n0/γ is the particle density in the beam frame,
T⊥ = meγ

2σ2
θc

2, T‖ = mec2σ2
η (here n0, σθ and ση re-

fer to the lab frame). The functions (1) and (2) expressed
in the same variables are actually equal to each other in
agreement with the fact that the distribution function is in-
variant with respect to the Lorentz transformation [3]. Our
assumption of non-relativistic motion in the beam frame
means T‖, T⊥ � mec2.

To illustrate the practicality of our assumptions, let us es-
timate the transverse and longitudinal temperatures of the
beam with the normalized emittance ε = 1 μm, beam en-
ergy 1 GeV, γ ≈ 2000, and the energy spread ση = 10−4—
typical parameters for a soft x-ray FEL beam. Assum-
ing that the beam is transported through a beam line with
the beta function of 10 m, we find the angular spread
σθ =

√
ε/γβ = 7 × 10−6 and T⊥ ≈ 100 eV. For the lon-

gitudinal temperature one finds T‖ ≈ 5 × 10−3 eV. We see

1In the opposite limit, σpz/p0 � σ2
θ
, one cannot neglect px and py in

the equation for energy, E ≈ pc ≈ pzc(1+ (p2
x + p2

y )/2p2
0), and the angular

spread of the beam is coupled to the energy spread.
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that non-relativistic condition T‖, T⊥ � mec2 is well sat-
isfied. Moreover, we also see that T‖ � T⊥. We will use
this condition in the next section to simplify the Coulomb
collision term.

SIMPLIFIED COULOMB COLLISION
TERM

We saw in the previous section, that for typical parame-
ters of an FEL beam ση � γσθ, and the longitudinal tem-
perature of the beam in the beam frame is much smaller
than the transverse one with both being non-relativistic.
The collision term can be simplified in this limit using an
approach similar to that developed in [4].

The EEHG distribution function of the beam after the
first chicane can be represented as a product of a Gaussian
distribution in the transverse direction, and a rapidly mod-
ulated Gaussian over the energy [5]. We approximate this
function (in the beam reference frame) by

F (p, t) = F2(px, py)F1(pz, t), (3)

where F1 is a one-dimensional distribution function over
pz and

F2(px, py) =
1

2πmT⊥
e−(p

2
x+p2

y )/2mT⊥ . (4)

The function F1 is normalized by
∫

dpzF1 = N . The char-
acteristic width of F1 is of order of

√
meT‖, and, as men-

tioned above, it is modulated on the scale ∼ √meT‖/m,
where m is the harmonic number. The time dependence
of F1 indicates its evolution due to Coulomb collisions,
however we neglect the time variation of F2 because it is a
much slower process compared with that of F1.

Due to the intrabeam scatteringF will evolve in time and
this evolution is described by the Landau collision term [6].
The collision term involves first and second derivatives of
F with respect to momenta, of which the dominant one in
our case will be ∂2F /∂p2

z , due to a rapid variation of F
along pz. Keeping only this term allows us to write the
kinetic equation for F as

∂F
∂t
=

1
2
Dzz
∂2F
∂p2

z
, (5)

where the diffusion coefficient Dzz is given by

Dzz = 4πNmee
4Λψ, (6)

with

ψ(p) =
∫

d3p′F (p′)
(px − p′x)

2 + (py − p′y)
2

|p− p′|3 , (7)

and Λ the Coulomb logarithm (cf. [4]). Because ψ is ob-
tained by integration of F , the rapid energy modulation of
F over pz will be averaged out, and we can use (2) in eval-
uation of the integral (7). In the limit T‖ � T⊥ one can also

approximate |p− p′| ≈ ((px− p′x)
2+ (py− p′y)

2)1/2 and carry
out integration over p′z in (7) using the normalization of F1:

ψ(px, py) = N
∫

d2p′F2(p′x, p
′
y)

× ((px − p′x)
2 + (py − p′y)

2)−1/2. (8)

Note that in our approximation ψ does not depend on pz

and is also independent of time.
To calculate the integral in (8) we use the identity R−1 =√
2/π
∫ ∞
0

dξe−ξ
2R2/2, and rewrite (8) as

ψ(px, py) =

√
2
π
N
∫ ∞

0
dξ
∫

d2p′ (9)

× e−ξ
2((px−p′x)

2+(py−p′y)
2)2/2F2(p′x, p

′
y).

The integration over px and py can now be easily carried
out

ψ(px, py) =
N√

2πmT⊥

∫ ∞
0

dζ

(ζ + 1)
√
ζ

(10)

× e−(p
2
x+p2

y )ζ/2mT⊥(ζ+1),

where we have introduced the new integration variable ζ =
ξ2meT⊥.

To obtain an equation for F1 we integrate (5) over px and
py:

∂F1

∂t
=

1
2
〈Dzz〉∂

2F1

∂p2
z
, (11)

where for 〈Dzz〉 ≡
∫

dpxdpyDzzF2(px, py) with the help
of (4) and (10) one finds

〈Dzz〉 = 4πNmee
4Λ

∫
dpxdpyψ(px, py)F2(px, py)

=
2π3/2N √mee4Λ√

T⊥
. (12)

This our result agrees with calculations of Ref. [4].

TRANSFORMATION TO THE
LABORATORY FRAME

We will now express all quantities in the beam frame
from the previous section in terms of the beam parame-
ters in the lab frame. We will also average our diffusion
equation over the transverse geometrical cross section of
the beam.

The time in the beam frame is related to the distance s
traveled in the lab frame via the transformation t → s/cγ.
The momentum pz in the beam frame can be expressed
through the energy deviation ΔE in the lab frame as pz →
ΔE/γc. This converts (11) to the lab frame

∂ f
∂s
=
γc
2
〈Dzz〉 ∂

2 f
∂ΔE2

, (13)
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where f is the energy distribution function in the lab frame.
Recalling the definitionsN = n/γ, and T⊥ = mγ2σ2

θ
c2 and

introducing the diffusion coefficient D in the lab frame as

D = γc〈Dzz〉 = 2π3/2ne4Λ

γσθ
, (14)

we arrive at

∂ f
∂s
=

1
2
D
∂2 f
∂ΔE2

. (15)

In our derivation we tacitly assumed that the beam den-
sity n is a constant. In reality, it is a function of x,
y and z which makes D and f also dependent on these
coordinates. Since in EEHG we are interested in one-
dimensional dynamics in z direction we will average (15)
over the transverse cross section of the beam assuming that
the dependence of n and f versus x and y is given by
exp[−(x2 + y2)/2σ2

⊥] with σ⊥ the rms transverse size of
the beam. The result of the integration does not change
the functional form of equation (15), but replaces the beam
density n in (14) by the following expression

n→ 1

4πσ2
⊥

I
reIA
, (16)

where I is the beam current, IA = mc3/e ≈ 17 kA is the
Alfven current and re is the classical electron radius. Af-
ter the averaging the distribution function f = f (z,ΔE, s)
remains dependent on ΔE, s and z. Finally, using the nor-
malized transverse emittance ε = γσθσ⊥, we obtain for the
diffusion coefficient

D =
π1/2e4Λ

2εreσ⊥

I
IA
. (17)

In practical units, assuming Λ ≈ 8 [7]

D = 3.1
I [kA]

(εx [μm])(σx [100 μ])
keV2

m
. (18)

APPLICATION FOR EEHG

In application to EEHG we will adopt a model, in which
we take collisions as occurring in a drift section of length
l after the first chicane. The justification of this approach
lies in the fact that in this region the distribution function,
being modulated in energy, is most sensitive to the colli-
sions. This energy modulation actually persists through
the second undulator and the second chicane, where it is
transformed into a high-harmonic density modulation of
the beam. While a more accurate theory should properly
treat the collision processes inside the second modulator
and the second chicane, in our model we ignore them. For
a pessimistic estimate on can add their lengths to l with the
assumption that the beam transverse size remains constant
throughout the system, and use for l the combined lengths
of the drift after the first chicane, the second undulator and
the second chicane.

In what follows, we use notations of Ref. [2] with A1 =

ΔE1/σE and A2 = ΔE2/σE for dimensionless amplitudes
of the energy modulation of the beam, B1 = R(1)

56 k1σE/E0

and B2 = R(2)
56 k1σE/E0 for the dimensionless strengths of

chicanes, p = (E−E0)/σE as the dimensionless energy de-
viation variable (not to be confused with momentum used
in the previous sections) and ζ = kLz as a longitudinal co-
ordinate in the beam, with kL the wave number of the laser
(assumed equal in both modulators). The distribution func-
tion after the first chicane is given by the following equa-
tion (see [2])

f1(ζ, p) =
1√
2π

e−(p−A1 sin(ζ−B1p))2/2. (19)

Plot of this function for A1 = 3 and B1 = 8.47 (the value
of B1 is an optimized value for the 50th harmonic EEHG)
is shown in Fig. 1. In order to solve the diffusion equa-

� Σ

Figure 1: Distribution function f1(0,ΔE/σE) optimized for
the 50th harmonic as a function of the normalized energy
deviation.

tion (15) for f we make the Fourier transformation over
the energy variable

f̂ (ζ, μ, s) =
1
2π

∫ ∞
−∞

dpeipμ f (ζ, p, s). (20)

The Fourier transformed Eq. (15)

∂ f̂
∂s
= − 1

2σ2
E

Dμ2 f̂ (21)

can easily be solved

f̂ (s, ζ, μ) = f̂1(ζ, μ)e
−Dsμ2/2σ2

E . (22)

Denoting the distribution function after the drift l, at the
entrance to the second modulator, by f2 we find

f2(ζ, p) =
∫ ∞
−∞

dμe−ipμ f̂1(ζ, μ)e−Sμ
2/2, (23)

with S = Dl/σ2
E . The second stage of EEHG carries out

the following transformation (see [2])

p′ = p + A2 sin(ζ), ζ′ = ζ + B2p + B2A2 sin(ζ), (24)
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which transforms f2(ζ, p) into a new distribution function
f3(ζ′, p′). Finally, the bunching factor of the mth har-
monic can be computed as a half of the Fourier harmonic
of f3(ζ′, p′) integrated over energy:

bm =
1
2

1
2π

∫ 2π

0
dζ′
∫ ∞
−∞

dp′eimζ′ f3(ζ
′, p′). (25)

Due to the symplecticity of the transformation (24) we can
replace integration over ζ′ and p′ in (25) by integration over
ζ, p variables which also reverts f3 to f2:

bm =
1
2

1
2π

∫ 2π

0
dζ
∫ ∞
−∞

dpeimζ′(ζ,p) f2(ζ, p) (26)

=
1
2

1
2π

∫ 2π

0
dζ
∫ ∞
−∞

dpeim(ζ+B2p+B2A2 sin(ζ)) f2(ζ, p).

Using (23) we can carry out integration over p and μ (the
integration over p results in the delta function δ(μ − mB2)
which makes the integration over μ trivial) and express the
result in terms of the function f̂1

bm =
1
2
e−Sm2B2

2/2
∫ 2π

0
dζeim(ζ+B2A2 sin(ζ)) f̂1(ζ,mB2). (27)

We see that the bunching factor with Coulomb collisions
can be written as a product of the bunching factor with-
out collisions b(0)

m and an exponential suppression factor
e−Sm2B2

2/2:

bm = b(0)
m e−l/L, (28)

where L = 2σ2
E/Dm2B2

2.

NUMERICAL EXAMPLES AND
CONCLUSION

For illustration we consider a soft x-ray EEHG FEL
scheme with emittance ε = 1 μm, beam peak current of
1 kA, and the rms energy spread 100 keV. We also assume
the rms transverse bunch size of 100 μm. Eq. (18) then
gives D = 3.1 keV2/m. We considered three EEHG scenar-
ios with the harmonic number m = 50, 100 and 200. For
all 3 cases we assumed that the dimensionless modulation
amplitude were A1 = 3 and A2 = 6. The optimized values
of B1 and B2, the bunching factors without collisions, and
the decay distance L are shown in Table 1. The exponential

Table 1: EEHG Parameters and the Decay Lengths L for
Three Scenarios

m A1 A2 B1 B2 b(0)
m L (m)

50 3 6 4.7 0.18 0.088 80
100 3 6 16.9 0.17 0.071 22.5
200 3 6 34.3 0.17 0.047 5.6

decay with the three values of L from Table 1 are shown
in Fig. 2. Figure 3 shows smearing out of the distribution

Figure 2: Plot of functions e−s/L for the three values of L
from Table 1.

� Σ

Figure 3: Blue dashed line: the distribution function from
Fig. 1; red line: the same distribution function evolved due
to Coulomb collisions after the distance s = 0.4L.

function for 50th harmonic after the distance s = 0.4L.
As one can see from these results, Coulomb collisions

represent a serious limiting factor for the EEHG seeding in
the range of harmonic numbers exceeding 102.
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