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Abstract
Seed radiation sources have the ability to increase lon-

gitudinal coherence, decrease saturation lengths, and im-

prove performance of tapering, polarization control and

other FEL features. Typically, seeding schemes start with

a simple sinusoidal modulation, which is manipulated to

provide bunching at a high harmonic of the original wave-

length. In this paper, we consider seeding from sawtooth

modulations. The sawtooth creates a clean phase space

structure, providing a maximal bunching factor without the

need for an FEL interaction. While a pure sawtooth mod-

ulation is a theoretical construct, it is possible to approach

the waveform by combining two or more of the compos-

ite wavelengths. We give examples of sawtooth seeding

for HGHG, EEHG and other schemes, and note that the

sawtooth modulation may aid in suppression of the mi-

crobunching instability.

INTRODUCTION
A Free Electron Laser (FEL) has the potential to pro-

duce fully coherent X-rays, a promising tool for the fields

of physics, chemistry and biology. To improve coherence

properties, there is strong interest in seeding FELs with op-

tical or UV lasers. In general, seeding schemes produce a

low level of microbunching, which the FEL process then

maximizes.

In this paper we consider the possibility of seeding with

sawtooth waveforms. By increasing the initial level of mi-

crobunching it may be possible to simplify, or even avoid,

an FEL stage. The flatter phase space of sawtooth wave-

forms can aid in the suppression of the microbunching in-

stability (MBI). Finally, we use the sawtooth formalism

as a tool for analyzing conventional sinusoidal seeding

schemes.

MOTIVATIONS

Direct Seeding
While seeding schemes generally incorporate an FEL

section to amplify the bunching factor, in principle it is

possible to drive a radiation source directly with the seeded

beam. Avoiding an FEL stage may allow for simpler ra-

diation sources, or may be essential in schemes when an

FEL stage would ruin the beam quality. (For example,

∗Work supported by Department of Energy contract DE-AC02-

76SF00515
† dratner@slac.stanford.edu

we have previously considered sawtooth seeding in combi-

nation with compressed harmonic generation, steady-state

microbunching and reversible seeding [1, 2, 3, 4]). Without

the amplifying effect of the FEL, the final radiated power

scales as the square of the initial seeded bunching. In this

case, maximizing the seeded bunching factor is essential,

and a sawtooth scheme may be of interest.

If an FEL amplifies bf following the seeding stage, the

FEL properties determine the final bunching level. How-

ever, the bunching amplitude must exceed the noise level

to produce a longitudinally coherent beam, so a sawtooth

modulation may still have advantages. Moreover, a larger

initial bunching level allows for a shorter FEL amplifica-

tion stage.

Reversible Laser Heater
The microbunching instability (MBI) is a potentially

dangerous instability that can seriously degrade FEL prop-

erties (see e.g. [5, 6, 7, 8]). By increasing the incoherent

energy spread of the beam with a laser heater it is possible

to suppress the MBI [9, 10]. However, a simple sinusoidal

energy modulation results in a two horn energy distribu-

tion, giving a slow Bessel function suppression instead of

the desired exponential damping (Fig. 1). As a result, laser

heater schemes include additional means of smearing the

energy modulation; at the Linac Coherent Light Source the

laser heater is placed in the middle of a chicane.

The sawtooth modulation presents an alternative ap-

proach to damping the MBI. Because the sawtooth pro-

duces a uniform energy distribution, the subsequent smear-

ing in a dispersive region produces a true incoherent en-

ergy spread. The sawtooth modulation could be a stand

alone laser heater stage, or could be part of a larger seeding

scheme (e.g. compressed harmonic generation [1]).
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Figure 1: Sinusoidal and sawtooth modulations of the

same amplitude (left) produce different energy distribu-

tions (right). The double horns of the sinusoidal distribu-

tion is less effective at suppressing MBI.
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Pedagogical Model
The mathematical simplicity of the sawtooth is useful as

a pedagogical model. The inherently linearized waveforms

allow closed form solutions of optimal bunching condi-

tions, and often solutions can be found from simple geo-

metric arguments. We will see that the results of sawtooth

optimization can also be applied to find approximate solu-

tions for sinusoidal seeding.

ANALYTICAL DESCRIPTION

Sawtooth HGHG

The simplest use of sawtooth seeding is with High Gain

Harmonic Generation (HGHG). To quantify the bunching

amplitude we define the bunching factor

bf (k) =

∫
dzf

∫
dpfe

ikzfΨ(zf , pf ) (1)

with final longitudinal particle position, zf , normalized en-

ergy, pf = (Ef − Eb)/Eb, wavevector, k = 2π/λ, and

distribution Ψ(zf , pf ). We can evaluate Eq. 1 analyti-

cally if we assume a simple initial distribution, Ψ(zi, pi) =
I exp[−p2i /2σ

2
δ ], with initial coordinates, zi and pi =

(Ei − Ea)/Ea, and energy spread, σδ = σE/Ea.

We can then write down the sawtooth scheme as

z1 = zi, p1 = pi +
2AL

λ
modλ (zi)

zf = z1 +R56p1, pf = p1 (2)

To evaluate Eq. 1, we change to the initial coordinates,

dzfdpf → dzidpi, where we can integrate over the sim-

ple initial Ψ(zi, pi).

To maximize bunching, we stand up each sawtooth fil-

ament in phase space, maximizing bunching (Fig. 2). As

a result, we find the optimal condition, R56AL = −λ/2.

We note that the sawtooth requires a larger modulation

amplitude, AL, than the normal HGHG, which requires

R56AL ≈ λ/2π. (The difference is due to the extra fac-

tor of π in the slope of a sine wave compared to a sawtooth

for equal modulation amplitudes.)

We can integrate Eq. 1 to find bunching at the harmonics

bf (hkL) = exp[− (hkLR56σδ)
2

2
] (3)

which is generally larger than from sinusoidal HGHG, with

bsine(hkL) = exp[− (hkLR56σδ)
2

2 ]Jh(hkLR56AL) [11]. To

avoid suppression by the energy spread, both sine and saw-

tooth modulations require |hkLR56σδ| < 1, giving signifi-

cant bunching at the harmonic h when AL > mσδ . How-

ever, in the sawtooth modulation case the bunching is larger

by a factor of ∼ 1/Jh(h), with the final radiated power

scaling as the square of bf .
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Figure 2: Illustration of the sawtooth HGHG scheme. At

left a sawtooth modulation with uniform density can drive

sharp density spikes following a dispersive section, right.

Sawtooth EEHG
The sawtooth modulation could also drive a variation

of Echo Enabled Harmonic Generation (EEHG) [12]. We

describe the EEHG process as follows: an initial modula-

tion (amplitude Va) and dispersive section (R
(a)
56 ) filament

the beam. A second modulation and dispersive section

(Vb, R
(b)
56 ) then bunch each filament individually. The har-

monic is determined by the separation of filaments (Fig. 3).

Figure 3: Illustration of the Echo mechanism for a sawtooth

modulation. The first dispersive section filaments the beam

(top right). The second modulation and dispersive sections

then individually bunch the filaments. The vertical sepa-

ration of filaments (arrow, top right), becomes horizontal

separation after the final dispersive section (arrow, bottom

right), determining harmonic number.

We can solve for the optimal EEHG manipulation condi-

tion through a simple geometric argument; after introduc-

ing the sawtooth modulation, our goal is leave each seg-

ment with a vertical slope (upright in phase space). We

trace the slope through each section of Fig. 3 to find

S1 = Va/ λin

S2 =
Va

λin + R
(a)
56 Va

S3 = S2 + Vb/ λin=
Va

λin + R
(a)
56 Va

+
Vb

λin
, (4)
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and we maximize bunching (final vertical segment) with

R
(b)
56 = − 1

S3
= − λin + R

(a)
56 Va

Va + Vb+ R
(a)
56 VaVb/ λin

. (5)

The horizontal spacing between the vertical filaments,

Δz =R
(b)
56 Δp, then determines the harmonic, H = 1/Δz,

where Δp is the vertical separation of filaments. We then

find optimized harmonic

H =
1

Δz
= −(1 +

Vb

Va
+

R
(a)
56 Vb

λin
) . (6)

For Vb = −Va, we find H =R
(a)
56 Vb/ λin.

The sawtooth model also provides a simple pedagogical

model for sinusoidal EEHG. While the general EEHG rela-

tions have no closed-form solution, we can find an approx-

imate solution for the sine wave by treating the linear por-

tions as sawtooth modulations. Applying the sawtooth re-

sults, we substitute Va → ha ≡ Vak and Vb → hb ≡ Vbk,

giving

R
(b)
56 =

λin + R
(a)
56 ha

ha + hb+ R
(a)
56 hahb/ λin

. (7)

We must be careful to allow for ha → ±ha, due to the

two linear regions of a sine wave (phase 0 and π). For

given values of R
(a)
56 and ha, we now find two slopes in the

second stage,

S2± =
ha

R
(a)
56 Va± λin

. (8)

The result is a more complicated harmonic structure. If we

choose a value of R
(b)
56 to satisfy Eq. 5 for one of the initial

slopes, we now find two harmonics corresponding to the

two initial slopes ±ha, resulting in

H± =
1

Δz
=

1

R
(b)
56 S±2

= H
R

(a)
56 ha± λin

R
(a)
56 ha+ λin

, (9)

where H is the harmonic solution given for the sawtooth

(Eq. 6). We then expect to find two harmonics (Fig.4). We

note that the exact optimal condition (which slightly over-

bunches the modulation, see [12]), enhances only one of

the two harmonics.

COMPARISON OF SAWTOOTH AND SINE
WAVEFORMS

While a true sawtooth is a theoretical construct, it may

be possible to approximate a sawtooth of amplitude A by

including the first few terms of the sawtooth expansion,

F (z) =
∑
n

2A

πn
sin(nkz) . (10)

Figure 4: Illustration of the Echo mechanism for a sine

modulation. Because a sine has two linear regions (ha =
±V k, purple and yellow lines), we will have two different

solutions for R
(b)
56 , giving two different harmonics H±. For

the parameters above, we find H+ = 10 and H− ≈ 8.

The optimal bunching condition of [12] will suppress the

secondary harmonic.
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Figure 5: To generate an approximate sawtooth modula-

tion, we can seed the beam with several seeds of different

frequencies. Even two or three frequencies can produce a

quasi-sawtooth modulation.

For example, using just the first two terms of the expan-

sion produces a comparatively uniform energy spread that

would suppress the MBI more efficiently.

Though sawtooth seeding allows for higher bunching

factors, the larger dispersion requirement suggests that sine

modulations may be more efficient at higher harmonics. To

evaluate the usefulness of the sawtooth, we compare equal

amplitude sawtooth and sine modulations. We find that

the sawtooth increases the bunching factor at low harmon-

ics, but the need for larger R56 (and thus greater smearing

of the incoherent energy spread), results in worse perfor-

mance at high harmonics.
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Figure 6: Comparison of equal amplitude sawtooth and

sine modulations. The sawtooth increases bunching at low

frequencies, but has worse performance at high harmonics.

The difficulty of producing short wavelength seed lasers

limits the final radiation wavelength in HGHG. For this rea-

son, we would like to compare the sawtooth and sine mod-
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ulations for a case of equal modulation power at the short-

est seed wavelength. In the case of a sawtooth constructed

from two frequencies (n = 1, 2 in Eq. 10), we then use the

same power as the sine HGHG case for the n = 2 term,

and double the modulation amplitude for n = 1. The result

is given in Fig. 7. Again we find that the sawtooth aids low

harmonic microbunching, but inhibits higher harmonics.
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Figure 7: Comparison of one and two wavelength HGHG.

The power at the higher frequency of the two wavelength

case matches that of the single wavelength case. Adding

the second (longer) wavelength modulation to approximate

the sawtooth appears to increase the bunching factor at low

harmonics, but does not help at high frequencies.

It may be possible to optimize the bunching factor by

deviating from the sawtooth expansion (Eq. 10). If avail-

able short wavelength laser power limits the final radiated

wavelength, then our goal is to improve the bunching factor

by adding power at longer wavelengths. As an example, in

Fig. 8 we add an additional modulation at double the wave-

length with four times the modulation amplitude. By opti-

mizing the dispersion, we find it is possible to enhance the

microbunching amplitude compared to a single wavelength

modulation. We note this scheme has some similarity to

single-chicane compressed harmonic generation [13] and

pre-density modulation [14]. Optimization work is ongo-

ing.

We have considered practical examples only for the case

of HGHG, but the same approach can be applied to any

seeding scheme. For example, Stupakov and Zolotorev

have completed a detailed analysis of optimized multi-

frequency seeding for EEHG [15].

1 1.5 2 2.5

−1

0

1

x 10
−4

Longitudinal Position

R
el

at
iv

e 
E

ne
rg

y

 

 

8 10 12

0

0.05

0.1

0.15

0.2

Modulation Amplitude E=10σ
δ

Harmonic Number

B
un

ch
in

g 
A

m
pl

itu
de

 

 Two Frequency

Long Wavelength Sine

Short Wavelength Sine

Two Frequency

Long Wavelength Sine

Short Wavelength Sine

Figure 8: On the left we show the phase space from a

high frequency seed (red), low frequency seed (green), and

combined seed (blue). At right, we see that the combined

seed produces stronger microbunching around the tenth

harmonic than the individual seeds. Harmonic number is

given relative to the longest seed wavelength.
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Figure 9: Electron beam density for the simulation of

Fig. 8. Rather than following the sawtooth expansion, we

tweak the relative amplitudes and dispersive strength to

produce two spikes separated by approximately λ/10.

CONCLUSION
We have considered seeding radiation sources with saw-

tooth modulations. We find that multi-frequency modula-

tions can optimize the bunching factor at targeted harmon-

ics and help suppress MBI. The sawtooth model is also use-

ful as a pedagogical model for studying seeding schemes.
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