
MODELING OF THE QUIET START ALGORITHM IN THE FRAMEWORK 
OF THE CORRELATION FUNCTION THEORY 

O.A. Shevchenko#, N.A. Vinokurov, Budker INP, Novosibirsk, Russia 

Abstract 
To suppress initial beam current fluctuations at the 

fundamental harmonic the macroparticle-based FEL 
simulation codes use the quiet start algorithm. This 
algorithm should be valid at linear stage but there is no 
simple method to check whether it gives correct results at 
saturation. The regular approach to the start-up from noise 
problem should be based on the correlation function 
equation. In this paper we show that the quiet start 
algorithm can be naturally described in the framework of 
the correlation function theory. For this purpose one just 
needs to assume nonzero correlations in the initial particle 
distribution. This approach gives the possibility to 
compare simulation results for the system with reduced 
number of particles and artificially suppressed initial 
fluctuations with the case of real system with large 
number of particles. 

INTRODUCTION 
To model beam dynamics most of the FEL simulation 

codes use macroparticles. The charge of one 
macroparticle is much larger then electron charge which 
leads to significant increase of charge density fluctuations 
induced by shot noise. To suppress appearance of these 
fluctuations one uses specially constructed initial particle 
distribution in which particles are assembled in small 
groups called beamlets. Particles in one beamlet have the 
same energy and transversal coordinates. The distance in 
longitudinal direction between two adjacent particles is 
close to half of the radiation wavelength so, that radiation 
of individual particles in one beamlet is almost cancelled. 
This approach is known as quiet start algorithm (see, e. g., 
[1]). 

Validity of the quiet start algorithm can be justified for 
the linear stage of SASE FEL operation but it is not so 
evident at saturation. The question of validity of this 
approach becomes especially significant when one tries to 
predict the saturation spectrum. 

The suppression of initial fluctuations can be described 
within the framework of the correlation function theory 
[2]. In this theory the quiet start distribution can be 
considered as initial distribution with non-zero correlation 
function. The advantage of this approach is that it gives a 
regular way to check whether the evolution of the system 
with artificially suppressed fluctuations is equivalent to 
the evolution of the real system with large number of 
particles at saturation stage. 

It also worth noting that initial correlations which 
suppress shot noise fluctuations can be created 
experimentally in real beam [3-5]. This phenomenon can 

be also described by correlation function theory. 
In this paper we show how the non-zero initial 

correlation function can compensate the shot noise term 
in correlation function equation for the case of quiet start 
loading as well as for the case of real beam. 

PARTICLE MOTION EQUATION  
In this paper we consider the model of coasting beam 

and the half-infinite undulator which starts at 0=z . The 
beam particle dynamics can be described by the following 
system of motion equations [2]: 
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where ( )kz  are particle longitudinal coordinates, ( )kΔ are 
relative energy deviations and ( )kX  are particle initial 
coordinates in 4-D transverse phase space. It is not a 
system of ordinary differential equations (ODE) as its 
right hand side (r.h.s.) is taken in retarded moment of 
time. But it can be reduced to ODE by the following 

choice of independent variable ( )zt −= 2
//2γθ . For 

simplicity we shell restrict our consideration to 1-D case. 
The resulting system of motion equations has the 

following form:  
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Further we shell use ww k12 =πλ  as the unit length 

for the longitudinal coordinates, where wλ  is the 

undulator period. The explicit expression for the 

interaction force ( )21, zzΦ  can be obtained from the 

solution of radiation field equation. But for our purpose 
we just need to assume that this force obeys the following 
conditions:  

1. ( ) 0, 21 =Φ zz  for 01 <z  or 02 <z  or 21 zz < . It 

means that particles do not interact outside undulator and 
front particles do not act on back ones. 

2. ( ) ( )2121, zzzz −Φ=Φ  inside undulator. 
 ___________________________________________  
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3. ( ) 0=Φ π  - particles separated by half of radiation 

wavelength do not interact with each other. 

4. ( ) ( )zz Φ−=+Φ π . As the result of this condition 

the force acting from two particles separated by half of 
radiation wavelength on the particle in front of them is 
cancelled. 

5. ( )zΦ  has narrow spectral bandwidth with central 

frequency 1=ω  so, that ( ) ( )zz Φ−≈Φ′′ . 

Solution of Eq. (2) totally describes the FEL operation. 
To obtain it one just needs to specify particle initial 
coordinates. But in practice this solution cannot be 
obtained because of the large number of particles. In 
simulations this number is reduced by using of 
macroparticles. It should be noted that majority of the 
FEL simulation codes use the field amplitude as 
additional variable. So, the particles do not interact with 
each other directly. Using of macroparticles leads to 
increasing of the shot noise which results in increasing of 
spontaneous emission. In our model the field variable is 
excluded but this difference is not principal.  

THE QUIET START INITIAL PARTICLE 
DISTRIBUTION 

To describe the quiet start algorithm within the 
correlation function approach we need to find initial 
distribution function which corresponds to quiet start 
loading. Let us consider the beam with length L  and 
number of particles N  which enters the undulator. The 
coasting beam limit will be obtained further by increasing 

the beam length ∞→L and particle number 

∞→= mN 2  so, that LNLN →  , where LN  .is 

the number of particles per the unit length. We assume 
that particles are grouped in m  pairs. The particles in one 
pair have the same energy. The difference of their spatial 

coordinates is equal to zδπ +  where zδ  is small 
deviation which is randomly distributed around zero value 

with density of probability ( )zχ  . We assume, that 

( ) ( )zz −= χχ  and ( ) 122 <<=∫ χσχ dzzz  . The 

centres of these pairs are uniformly distributed along axes 

Z  and their energies have distribution ( )Δ0F  . 

The N  - particle distribution function for such beam 
can be written in the following form: 
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where ( ) ( ) ( ) ( )πχδ −−Δ−ΔΔ=
21211021 ,

~
iiiii zzLFiif   

The sum is taken over all transpositions of particle 
numbers. This distribution function obeys the following 
normalizing condition: 

( ) 1,,,,
1

1111 =ΔΔΔΔ∫ NNNNNN ddzddzzzf
L

  

Integrating of (3) over 2−N  particle coordinates and 

taking the limit ∞→L  one obtains the following 
expression for the two-particle distribution function: 
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The corresponding initial correlation function has the 
following form: 
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CORRELATION FUNCTION EQUATION 
Expression (5) is derived for some given moment of 

time θ . But one can easily check that for 01 <z  or 

02 <z  it obeys the stationary correlation function 

equation:  
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So, we can try to find the solution of (6) in the following 
form: 

( ) ( ) ( )2211221102211 ,;,,;,,;, ΔΔ+ΔΔ=ΔΔ zzgzzGzzG  

 (7) 

where ( ) 0,;, 2211 =ΔΔ zzg  for 01 <z  or 02 <z  . 

Substituting (6) into (7) and taking into account that  
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we obtain the equation for ( )2211 ,;, ΔΔ zzg  : 
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The last two terms in the r.h.s. of (8) vanish at linear 

stage as at this stage ( ) ( )Δ=Δ 0, FzF  So, we can see 

that at linear stage eq. (8) has the same form as eq. (6) but 
now the noise level which is determined by the first term 

in r.h.s. of eq. (8) depends on χσ  . If we take 

exp

2

L

L

N
N

=χσ  we obtain the same correlation function 

equation as for the beam which contains exp
LN  

uncorrelated particles per unit length. It means that at 
linear stage behaviour of artificially constructed beam 

with LN  particles per unit length and quiet start 

distribution is similar to the behaviour of real beam with 
exp
LN  particles per unit length and uniform distribution. 

Compensation of the shot noise is destroyed at 

saturation when ( )Δ,zF  changes significantly. The 

validity of quite start algorithm at this stage can be 
checked by numerical solution of eq. (8). 

SUPPRESSION OF THE SHOT NOISE IN 
REAL BEAM 

We considered how the correlation function theory 
describes suppression of the shot noise in electron beam 
with artificially constructed particle distribution. But this 
theory also describes the noise suppression mechanism in 
real beam with some initial correlations. To make this 
suppression one needs to create the particle distribution 

with initial correlation function ( )22110 ,;, ΔΔ zzG  

which obeys the following equations: 
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The first equation guaranties that correlations are not 
destroyed in undulator and the last one ensures 
compensation of the noise term in the r.h.s. of (6). 
Approximate equality sign in the last equation is used 
because in general case this equation may not have exact 
solution. 

Let us consider an example of coasting beam with 

small energy spread. In this case ( ) ( )Δ≈Δ δ0F  and 0G  

can be taken in the following form: 

( ) ( ) ( ) ( )212122110 ,;, zzzzG −ΔΔ=ΔΔ μδδ  (10) 

where ( )21 zz −μ  should be determined from the 

equation: 
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If we take ( ) ( )2121 cos~ zzzz −−Φ  then solution 

of eq. (9) has the following form: 

( ) ( ) ( )212121 cos
2 zzzz

N
zz

L

−Π−−=−μ    

where ( ) π1=Π z  if ( )2,2 ππ−∈z  and 

( ) 0=Π z  otherwise. This solution is valid for 

( )2,2 12 ππ −∈ zz  . 

Particle distribution with required initial correlation 
function can be obtained from the uniform distribution by 
”measuring” particle positions and making small shifts in 
longitudinal direction as it is suggested in [4]. 

CONCLUSION 
In this paper we considered the shot noise suppression 

using the correlation function equation. It is interesting 
for both computer simulation and noise reduction in real 
beams. For linear problems the results may be obtained 
by other approaches. The reason of it is that for the linear 
transformations one can use the Green function of a 
problem and averaging over the ensemble of initial 
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conditions. But, in nonlinear cases, like the FEL 
saturation, the correlation function technique may be the 
only appropriate one. Moreover, the correlation function 
approach gives us the different insight for statistical 
phenomena. 
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