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Abstract 

The optical synchronization system at the free electron 
laser in Hamburg (FLASH) has been in operation since 
2008. Due to continuous improvement and several 
upgrades it has become an integral part of the machine 
operation and of pump-probe experiments as both rely on 
its performance. In summer 2013, a second FEL section, 
called FLASH II, which is using the same accelerator as 
FLASH will start its operation to increase the number of 
user experiments and to test new seeding schemes. This 
also requires a major extension of the synchronization 
system since new clients have to be supplied with a 10 fs-
stable timing signal. Six additional stabilized fiber links 
and the according end stations like bunch arrival time 
monitors and laser synchronization setups will be 
installed. 

THE OPTICAL SYNCHRONIZATION 
SYSTEM AT FLASH 

For the synchronization needs of a next generation light 
source like FLASH and the European XFEL a pulsed 
optical synchronization system was proposed [1]. 
Compared to the alternative use of an optical cw system, 
the pulsed scheme has several advantages e.g. the direct 
use of the pulses for beam diagnostics in electron Bunch 
Arrival-time Monitors (BAM) [2] and the operation of 
balanced optical cross-correlators (OXC) [3] for the 
synchronization of external lasers. The pulse-train can 
also be used for low-noise and low-drift RF generation 
e.g. as reference for the LLRF [4, 5]. 

Consequently, such a system has been developed and 
operated for over three years at the FLASH facility at 
DESY [6]. 

Operation Principle 
The operation relies on the starlike distribution along 

the accelerator of ~200 fs FWHM laser pulses in optical 
fiber with a repetition rate of 216.67MHz.The source is a 
commercial laser operating at 1559 nm which output can 
be split to up to 16 individual fiber link stabilization units. 
Each unit contains passive dispersion compensation for 
the fiber link, a balanced optical cross-correlator [7], and 
two actuators for the compensation of optical length 
changes in the link. The first actuator for fast (few 
hundred Hertz) optical length changing is a fiber coiled 
around a piezo ceramic, called fiber stretcher. Its range is 
limited by software to about 7 ps in order to reduce 
polarization mode dispersion effects due to mechanical 
stress on the fiber. The second actuator situated in the 

free-space optics part of the stabilization unit is a 
motorized delay stage which acts each time the piezo 
voltage of the stretcher gets to its limits. The current 
version of the in-house developed and built delay stage 
has a travel range of about 45 mm. Since it uses a retro 
reflector, the beam travels along the adjustment range four 
times providing a shifting range of about 600 ps [8]. 

At the end station of each fiber link, the polarization of 
the laser pulses is rotated by 90°and a fraction is reflected 
back to the stabilization unit. Here each reflected pulse is 
compared to a fresh reference pulse from the laser source 
in the optical cross-correlator. Any detected change in 
timing is compensated by a digital feedback controller 
driving the actuators. 

Implementation at FLASH 
The entire system is installed in small hutch close to the 

FLASH injector, called synchronization-hutch (Figure 1). 
Two lasers for redundancy, the beam splitting setup, and 
the link stabilization units are placed on an optical table. 
There is convenient space for up to 8 units, additional 
units have to be installed on top of the existing ones 
making the installation and maintenance much more 
complicated.  

Over the past years, the system has constantly been 
upgraded and extended. During the daily operation 
several unexpected problems occurred which could be 
solved by redesigning the stabilization units. Additionally, 
the implementation of the commercial laser meant a big 
step towards reliability and robustness of the system. 

There are seven link stabilization units in operation at 
the time this paper is being written (August 2011). The 
length of the different fiber links ranges from about 50 m 
to the first bunch compressor up to about 400 m to the 
experimental hall. 

The reference signals at the end stations are used to 
synchronize the seed laser of the sFLASH (seeded 
FLASH) HHG (higher harmonic generation) experiment 
and the pump-probe laser [9]. The operation of four 
BAMs allows the users of the FEL facility to check and 
track the arrival time of the photon pulses which is 
naturally correlated to the arrival time of the electron 
bunches. 

The biggest achievement made possible by the use of 
the pulsed optical synchronization system is the beam-
based feedback (BBFB) which uses the information of 
different beam diagnostic monitors like the BAMs in 
order to stabilize the energy and arrival-time of the 
electron bunches [10, 11]. Two different types of 
feedbacks have been implemented. The slow feedback 
uses the averaged arrival-time and bunch compression of *matthias.felber@desy.de 
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