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Abstract

Fluctuations in highly bright, relativistic electron beams
for free electron lasers (FELs) may exhibit both collec-
tive as well as individual particle aspects, similar to that
of non-relativistic plasmas. If the collective part char-
acterized by the plasma oscillation dominates, then it is
feasible to suppress shot noise (density fluctuations) as is
well known in microwave devices. However, individual
particle aspects become more significant as we consider
fluctuations of shorter wavelengths. To study this issue,
we solve the 1-D coupled Gauss-Klimontovich equations
by the Laplace transform technique. We find the density
fluctuations to be composed of a linear combination of
the collective plasma oscillations and the random motion
of Debye-screened dressed particles. The relative magni-
tude of the random to the collective part scales with kλD ,
where k is the fluctuation wavenumber and λD is the De-
bye length suitably defined for relativistic beams. Electron
beams used to generate x-ray self-amplified spontaneous
emission (SASE) typically have kλD ∼ 1, and therefore
collective oscillations are not relevant. When kλD is small
the decrease in shot noise (density fluctuation) after one
quarter plasma period is accompanied by an increase in
“momentum noise” which scales as 1/kλD. Since the ef-
fective seed for SASE includes both terms, a reduction in
shot noise may not result in a reduction of the SASE power.

INTRODUCTION

Fluid models for electron beams are typically sufficient
to compute mean field averages and the properties of long-
scale fluctuations. However, since fluid models smooth
out the intrinsic graininess of individual electrons, they ig-
nore fluctuations associated with discrete particle effects.
Thus, it is in general important to understand to what
degree discrete particle effects modify those predictions
based on continuum models. Since electron density fluc-
tuations are the source of self-amplified spontaneous emis-
sion (SASE) in free-electron lasers (FELs), it is particularly
important to understand both aspects of particle motion
if one wishes to compute how these density fluctuations
evolve and eventually seed an FEL. Such fluctuation char-
acteristics have been studied extensively for non-relativistic
plasmas [1, 2, 3]. Here, we study the role of collective and
individual particle effects in relativistic beams with partic-
ular focus on their implications to FEL performance.
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We begin our discussion by introducing the governing
equations and method of solution, which uses the method
of Ref. [4] first introduced to analyze linear evolution in
high-gain free electron lasers. We then show how the elec-
tron beam density (or bunching factor) can be decomposed
into two components, one that contains the collective par-
ticle motion due to the electron plasma wave, and the other
that contains terms associated with single particle dynam-
ics. The latter can be understood as the free motion of
Debye-screened electrons. Finally, we compute the rela-
tive contribution of these two terms for LCLS parameters,
and show to what extent collective plasma wave dynamics
are important for FEL-type electron beams.

PARTICLE EQUATIONS AND SOLUTION

First, we introduce the 1-D equations governing the elec-
tron beam transport under the influence of the electrostatic
force. We use the distance along the accelerator axis z as
the independent variable, while the dependent electron co-
ordinate ζ = z − v0t defines the particle location with re-
spect to the bunch center, where v0 is the velocity of the
reference particle and t is the time of arrival at the trans-
verse plane z. The particle momentum conjugate to ζ is
then Δβ ≡ dζ/dz = 1 − β0/β ≈ (Δγ/γ0)(1/β0γ

2
0),

where β is the particle velocity divided by the light velocity
c, the Lorentz factor γ ≡ 1/

√
1 − β2, and Δγ ≡ γ − γ0 is

the difference in particle energy from the reference energy.
We introduce the particle distribution function f(ζ, Δβ; z)
on the phase space (ζ, Δβ), which satisfies

∂f

∂z
+ Δβ

∂f

∂ζ
− eE

mcβγ3
0

∂f

∂Δβ
= 0, (1)

where the longitudinal component of the electric field
E(ζ, z) satisfies Gauss’s equation

∂E

∂z
+

∂E

∂ζ
= − e

ε0

∫
dΔβ f(ζ, Δβ; z). (2)

Here, ε0 is the vacuum dielectric constant and e is the mag-
nitude of the electron charge. The distribution function f
can be written in the Klimontovich form:

f(ζ, Δβ; z) =
1
A

Ne∑

j=1

δ[ζ − ζj(z)]δ[Δβ − Δβj(z)], (3)

where the sum is over all Ne eelctrons and A is the trans-
verse area. To develop a perturbation theory, we split
the distribution function into the smooth background term
f0(Δβ) and the rest f̂(ζ, Δβ; z):

f(ζ, Δβ; z) = f0(Δβ) + f̂(ζ, Δβ; z)

≡ n0g(Δβ) + f̂(ζ, Δβ; z), (4)
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where, n0 is the uniform electron beam density and the mo-
mentum distribution function g associated with f0 is nor-
malized such that

∫
dΔβ g(Δβ) = 1. Our solution will be

simplified by introducing the Laplace transform in z and
Fourier transform in ζ as follows:

f̂ω,k(Δβ) =
1
2π

∞∫

0

dz eiωz

∞∫

−∞
dζ f̂(ζ, Δβ; z) (5)

Eω,k =
1
2π

∞∫

0

dz eiωz

∞∫

−∞
dζ E(ζ; z). (6)

We assume that the background distribution f0 is in some
sense much larger than the perturbation f̂ , so that f0 and
f̂ are, respectively, zeroth order and first order quantities.
Additionally, we are only interested in wavelengths with
k �= 0, so that according to Eq. (2) the electric field is also
first order (|E| ∼ |f̂ |). In this case at first order we obtain
the following linear system of equations:

(ω − kΔβ)f̂ω,k +
ien0g

′

mβγ3
Eω,k = if̂k(Δβ; 0) (7)

(ω − k)Eω,k =
ie

ε0

∫
dΔβ f̂ω,k. (8)

In the above, g′(Δβ) ≡ dg/dΔβ, and

f̂k(Δβ; 0) =
1
2π

∫
dζ e−ikζ f̂(ζ, Δβ; z = 0)

=
1

2πA

Ne∑

j=1

e−ikζ0
j δ(Δβ − Δβ0

j ). (9)

Here (ζ0
j , Δβ0

j ) are the initial phase space coordinates for
the jth particle: (ζ0

j , Δβ0
j ) = (ζj(z = 0), Δβj(z = 0)).

In the following we consider only the case ω � k; for the
relevant wavelengths we will see that Ωp < k/γ2

0 , so this
is typically well-satisfied. Therefore, Eq. (8) can be written
as

Eω,k = − ie

ε0k

∫
dΔβ f̂ω,k. (10)

Solving the linear system Eqs. (7) and (10), we obtain

Eω,k =
e

2πkε0ε(k, ω)
1
A

Ne∑

j=1

e−ikζ0
j

ω − kΔβ0
j

, (11)

where we have introduced the normalized dielectric re-
sponse function

ε(k, ω) = 1 + Ω2
p

∫
dΔβ

g′(Δβ)
ω − kΔβ

. (12)

Here Ωp =
√

e2n0/ε0mβ0γ3
0 is the electron beam plasma

frequency in the laboratory frame. Having obtained the
electric field, the first order Klimontovich distribution can
be obtained from Eq. (7).

Since the SASE from an FEL is largely seeded by the
initial density fluctuations, we consider the explicit solution
for the “bunching factor” defined as

bk(z) =
A

Ne

∫
dζdΔβ e−ikζ f̂(ζ, Δβ; z)

=
1

Ne

Ne∑

j=1

e−ikζj(z). (13)

Its Laplace transform was computed in above, which can
be obtained from Eqs. (10-11):

bω,k =
A

Ne

∫
dΔβ f̂ω,k(Δβ) =

ikε0

eNe
Eω,k

=
i

2πε(ω, k)
1

Ne

Ne∑

j=1

e−ikζ0
j

ω − kΔβ0
j

. (14)

The inverse Laplace transformation yields

bk(z) =
i

2πNe

∫

L

dω
eiωz

ε(k, ω)

Ne∑

j=1

e−ikζ0
j

ω − kΔβ0
j

, (15)

where the integral along the Landau contour L can be per-
formed by finding the poles and evaluating the residues.
We will find it instructive to separate the poles into two
groups: the first obtained from the zeros of dielectric func-
tion defined by ωq : ε(k, ωq) = 0; the second are given by
ω = kΔβ0

j for j = 1, 2, . . . , Ne. We use the superscript C
to distinguish the part of the bunching factor arising from
the former set of poles with ω = ωq, while we identify the
latter poles the superscript I:

bk(z) = bC
k (z) + bI

k(z) (16)

with

bC
k (z) =

∑

q

e−iωq
1

ε′(k, ωq)
1

Ne

Ne∑

j=1

e−ikζ0
j

ω − kΔβ0
j

(17)

bI
k(z) =

1
Ne

Ne∑

j=1

e−ikζ0
j

ε(k, kΔβ0
j )

, (18)

where the ωq are the solutions of ε(k, ωq) = 0 and the
prime denotes the derivative with respect to ω.

We shall see in the following that Eq. (17) and Eq. (18)
correspond, respectively, to the “collective” part exhibiting
plasma oscillations and to the “individual” part for which
each particle moves independently. This decomposition of
the bunching factor is a precise formulation of that first in-
troduced by Pines and Bohm [1].

COLLECTIVE AND INDIVIDUAL
PARTICLE COMPONENTS

In this section we illustrate the behavior of the collective
component bC

k and the single particle component bI
k, and
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show what parameters control their relative importance.
To make this calculation explicit, we will assume that the
smooth part of the momentum distribution is Gaussian

g(Δβ) =
exp[−(Δβ)2/2σ2

Δβ]√
2πσΔβ

, (19)

where σΔβ is the rms momentum width. Following stan-
dard plasma physics, the Debye length λD is defined as

λD = σΔβ/Ωp. (20)

To study the collective part, we first consider the case
kλD � 1, for which the diectric function can be approx-
imately computed as ε(k, ω) ≈ 1 − Ω2

p/ω2. Thus, there
are two poles ωq = ±Ωp [3], and the collective part of the
bunching is

bC
k (z) ≈ 1

Ne

Ne∑

j=1

e−ikζ0
j

[
e−iΩpz

Ωp − kΔβ0
j

+
eiΩpz

Ωp + kΔβ0
j

]

.

(21)
In view our assumption kλD � 1, Ωp 	 kΔβ0

j for most
values of Δβ0

j , and Eq. (21) can be written as

bC
k (z) = bk(0) cos(Ωpz) − ik

Ωp
pk(0) sin(Ωpz). (22)

Here bk(0) and pk(0) are the initial values of the bunching
factor and the beam energy modulation, given by

bk(0) =
1

Ne

∑

j

e−ikζ0
j (23)

pk(0) =
1

Ne

∑

j

Δβ0
j e−ikζ0

j . (24)

In general, the energy modulation is given by the average

pk(z) =
A

Ne

∫
dΔβ f̂kΔβ =

1
Ne

∑

j

Δβe−ikζj . (25)

By Fourier transforming (1) and integrating over Δβ, we
find that pk and bk are related by the continuity equation

pk(z) =
i

k

∂

∂z
bk(z). (26)

The beam energy modulation can also be decomposed into
collective and incoherent parts. When kλD � 1, the col-
lective part of the energy modulation is

pC
k (z) ≈ pk(0) cos(Ωpz) − iΩp

k
bk(0) sin(Ωpz). (27)

Equations (22) and (27) describe the plasma oscillation.
Let us now look at the incoherent term of the bunching

(18), which is given by a sum over e−ik(ζ0
j +Δβ0

j z). This
represents the phase evolution of a free particle, with the
factor 1/ε(k, kΔβj) interpreted as the shielding due to the

other electrons. The magnitude of the incoherent term can
be found from

〈∣
∣bI

k

∣
∣2

〉
=

〈
1

Ne

∑

j

1
|ε(k, kΔβ0

j )|2
〉

+

〈
1

N2
e

∑

j �=�

e−ik[ζ0
j −ζ0

� +(Δβ0
j−Δβ0

� )z]

ε(k, kΔβ0
j )ε∗(k, kΔβ0

� )

〉

,

(28)

where the angular brackets denote taking an ensemble aver-
age. Invoking the random phase approximation, the second
term above vanishes, and the first term can be written as the
integral

〈∣
∣bI

k

∣
∣2

〉
=

1
Ne

∫
dΔβ

g(Δβ)
|ε(k, kΔβ|2 . (29)

For the Maxwellian velocity distribution (19), the exact
value of the integral in (29) can be found by setting up the
Kramers-Kronig relation for the function 1/ε(k, ω), which
is analytic in the upper half ω-plane [5]. The result is [2]

〈∣
∣bI

k

∣
∣2

〉
=

1
Ne

(kλD)2

1 + kλ2
D

. (30)

Thus the magnitude of the incoherent part is small if
kλD � 1. In that case, equipartition predicts that the
electrostatic field energy density of the plasma wave modes
scales as ∼ σ2

Δβ ∼ λ2
D for each k, which implies density

fluctuations |b|2 ∼ (kλD)2/Ne. In the other extreme, if
kλD � 1 the random density fluctuations approach those
of a noninteracting gas, |b|2 ∼ 1/Ne.

IMPLICATION FOR FELS

We are now in a position to investigate to what extent
the collective plasma wave dynamics of the electron beam
affect the FEL output. The effective input noise for SASE
is proportional to [4]

Sk(z0) =

∣∣
∣
∣
∣
∣

Ne∑

j=1

e−ikζj(z0)

μ − ηj/ρ

∣∣
∣
∣
∣
∣

2

, (31)

where z0 is the position of the undulator entrance, μ is the
complex growth rate given by the root of the FEL disper-
sion relation, ηj = Δγj/γ0 = γ2

0Δβj , and ρ is the FEL
strength (Pierce) parameter. Assuming |μ| > |ηj/ρ|, as is
typically the case, we expand the SASE seed (31) keeping
only the first order term:

Sk(z0) = N2
e

∣∣
∣
∣bk(z0) +

μ

ρ
γ2
0pk(z0)

∣∣
∣
∣

2

. (32)

We note from Eqs. (23)-(24) that the magnitudes of the
bunching factor and the collective momentum at z = 0 are

|bk(0)| =
1√
Ne

|pk(0)| =
σΔβ√

Ne

. (33)
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Table 1: Numerical example for the LCLS case using the data in Ref [8]. The first column lists the existing LCLS
parameters at 1.5 Å, while the (hypothetical) FEL using the LCLS injector parameters set K = 1.41 and λu = 7.3 cm to
obtain 1 micron radiation with the 135 MeV electron beam.

LCLS LCLS injector
Energy [GeV] 14.4 (γ0 = 28 × 103) 0.135 (γ0 = 264)

Peak current [A] 3400 40
Normalized Energy spread (rms) 10−4 2 × 10−5

Beam size (rms) [microns] 7.7 67.3
Modulation wavelength [Å] 1.5 104

FEL parameter ρ 5 × 10−4 5.5 × 10−3

kλD 1.13 8.5 × 10−3

If kλD � 0.3, than the collective plasma oscillation makes
sense and one quarter plasma period later at z = π/2Ωp =
Λp/4 they are given by

|bk(Λp/4)| =
kλD√

Ne

|pk(Λp/4)| =
Ωp

k
√

Ne

. (34)

Therefore, if the undulator entrance is at z = 0, we have

Sk(0) = Ne

(

1 +
∣
∣
∣
∣
μση

ρ

∣
∣
∣
∣

2
)

, (35)

where, ση ≡ γ2
0σΔβ is the normalized rms energy spread.

The second term in Eq. (35), which is due to the “momen-
tum” noise, is in general smaller than the first term since
for the FEL we require ση/ρ < 1. On the other hand, if the
undulator entrance is at z = Λp/4 (and kλD ≤ 0.3), the
input noise becomes

Sk(Λp/4) = Ne

(

(kλD)2 +
∣
∣∣
∣μ

ση

ρ

1
kλD

∣
∣∣
∣

2
)

. (36)

After a quarter period of the plasma oscillation, the first
term in (36) associated with the bunching is much smaller
than the corresponding term in (35) when the collective be-
havior dominates, i.e., if kλD � 1. This is a well-known
phenomenon of “shot noise reduction” after a propagation
distance equal to one quarter plasma wavelength from the
cathode. Recently, it was proposed in Refs. [6, 7] to em-
ploy this effect to suppress the shot noise for high-gain
self-amplified spontaneous emission. However, the second
term in Eq. (36), which can be attributed to the contribu-
tion from the momentum noise, can be larger than unity if
kλD � 1. Furthermore, the largest possible noise reduc-
tion due to the plasma wave occurs when the two terms of
(36) are equal, in which case the SASE seeding is reduced
by an amount ση/ρ. For typical FELs under consideration
we have ση/ρ ∼ 0.1-0.3.

We conclude this section by computing the role of
plasma oscillations for two sets of Linac Coherent Light
Source (LCLS) parameters taken from Ref. [8], that we list
in Table 1. The first column shows the LCLS operating
point at 1.5 Å, for which we find that kλD > 1 so that
the collective oscillation dynamics are not relevant at these

wavelengths. If we consider the beam after the injector at
135 MeV, however, then for the nominal wavelength of 1
μm we have kλD � 1, and plasma wave oscillations are
important. Nevertheless, after one-quarter plasma period
the reduction of the input SASE noise at this wavelength is
marginal, Sk(Λp/4) ≈ Ne/2, because of the large increase
in momentum noise [the second term in (36)].

CONCLUSIONS

To properly determine the fluctuation characteristics in
a highly relativistic electron beam, one must consider how
discrete particle effects might modify any collective behav-
ior. We presented a simple 1-D model that illustrates a
clear division between collective and single particle behav-
ior, showing that single particle dynamics plays a dominant
role for beam fluctuations whose length scale is less than
or of order the Debye length. This seems to be the regime
of parameter space relevant for hard x-ray FELs. Further-
more, we have shown that even when collective behavior is
important, there are important situations where a reduction
in density (shot) noise due to the collective plasma wave
does not lead to a marked decrease in seed power for SASE,
due to the associated increase in momentum noise of the
beam.
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