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Abstract 
We report on measurements of broadband, intense, 

coherent transition radiation at terahertz frequencies, 
generated as the highly compressed electron bunches in 
LCLS pass through a thin metal foil. The foil is inserted at 
45° to the electron beam, 31 m downstream of the 
undulator. The THz emission passes downward through a 
diamond window to an optical table below the beamline. 
A fully compressed 350-pC bunch produces up to 0.5 mJ 
in a nearly half-cycle pulse of 50 fs FWHM with a 
spectrum peaking at 10 THz. We estimate a peak field at 
the focus of over 2.5 GV/m. A 20-fs Ti:sapphire laser 
oscillator has recently been installed for electro-optic 
measurements. We are developing plans to add an x-ray 
probe to this THz pump, by diffracting FEL x rays onto 
the table with a thin silicon crystal. The x rays would 
arrive with an adjustable time delay after the THz. This 
will provide a rapid start to user studies of materials 
excited by intense single-cycle pulses and will serve as a 
step toward a THz transport line for LCLS-II. 

INTRODUCTION 
The terahertz (THz) frequency range, from 1 mm to 10 

µm (0.3 to 30 THz), occupies the gap between millimetre 
waves and the mid-infrared. It has been perhaps the least 
exploited part of the electromagnetic spectrum, mostly 
due to a lack of good sources and a corresponding lack of 
optical components and detectors. There has been signi-
ficant recent progress in generating THz with lasers, using 
optical rectification from tilted pulse fronts [1,2,3], laser-
produced plasmas in gases [4,5], and difference frequency 
mixing of phase-locked optical parametric amplifiers 
[6,7]. This has stimulated work in such diverse appli-
cations as the coherent atomic-scale control of materials 
and the exploration of novel nonlinear responses 
[8,9,10,11]. These techniques typically produce broad-
band 10-µJ pulses with peak fields of 100 MV/m for a 
single temporal peak (“quasi-half-cycle”) [1,2,3,4] and up 

to 1 GV/m for few-cycle pulses [6,7]. 
Coherent transition radiation (CTR) from relativistic 

electron bunches has generated similar peak fields 
[12,13,14,15]. At the Linear Coherent Light Source 
(LCLS) x-ray FEL at SLAC National Accelerator 
Laboratory, studies of THz began in late 2010. Here we 
show that CTR from highly compressed (50 fs), high-
charge (350 pC) electron bunches in LCLS generates 
quasi-half-cycle THz pulses over the band from 0.1 to 40 
THz, with energies of 100 to 500 µJ and with peak 
electric fields of 2.5 GV/m. 

Since the pulses reproduce the femtosecond scale of the 
electron bunch, the radiation is a useful diagnostic of 
these extremely short bunches. Moreover, the location of 
this source 31 m after the undulator provides a unique 
opportunity to excite a sample with a THz pump and then 
probe its response with an FEL x-ray pulse. The fields 
approach 1 V/Å, characteristic of atomic bonds. Both 
pump and probe have the femtosecond time scale of 
material responses, and with inherently low relative jitter. 
We will present our concept for a simple pump-probe 
setup on the optical table used for THz characterization. 

THE LCLS THZ SOURCE 

Layout 
The CTR source is a thin metal foil. To ensure radiation 

safety for users downstream in the experimental hutches, 
the foil thickness should be below 10 µm over a span of 
25 mm horizontally and 18 mm vertically, corresponding 
to a circular foil of 25 mm tilted at 45°. A tighter limit on 
foil thickness comes from avoiding substantial attenuation 
of LCLS x rays. Initially we used a 2-µm beryllium foil; 
this was recently replaced with 0.5 µm of aluminium. A 
pneumatic actuator inserts it at 45° to the beam so that the 
CTR from electrons approaching the foil radiates down-
ward through a polycrystalline diamond window 25 mm 
in diameter and 250-µm thick. A gold-coated off-axis 
parabolic mirror (OAP) below the window collimates the 
light. Due to the sensitivity of its alignment, motors 
enable 5-axis remote adjustment of the OAP (3 trans-
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