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Abstract

A new method to measure the X-rays pulse duration
through the analysis of the statistical properties of the
SASE FEL spectra has been developed. The information
on the pulse duration is contained in the correlation func-
tion of the intensity spectra measured after a spectrometer.
The spectral correlation function is derived analytically for
different profile shapes in the exponential growth regime
and issues like spectral central frequency jitter and shot by
shot statistical gain are addressed. Numerical simulations
will show that the method is applicable also in saturation
regime and that both pulse duration and spectrometer reso-
lution can be recovered from the spectral correlation func-
tion. The method has been experimentally demonstrated at
LCLS, measuring the soft X-rays pulse durations for differ-
ent electron bunch lengths, and the evolution of the pulse
durations for different undulator distances. Shorter pulse
durations down to 13 fs FWHM have been measured using
the slotted foil.

INTRODUCTION

Radiation from relativisitic electrons constitutes a large
spectral range from terahertz to x-rays and provides
widespread scientifc and industrial applications. The ad-
vent of x-ray free-electron lasers (FELs) [1] has opened up
many new research directions: it is now possible to observe
atoms and molecules in motion because of the brevity and
the intensity of these x-ray pulses. In exploration of this
ultrafast world, the accurate knowledge of the x-ray pulse
duration is critical.

For an x-ray FEL based on self-amplified spontaneous
emission (SASE), the radiation originates from the initial
random distribution of the electrons within a bunch. In-
formation about the electron bunch length can be obtained
from the statistical fluctuation of the incoherent radiation
intensity [2, 3], as demonstrated by earlier experiments us-
ing spontaneous radiation sources [4, 5, 6, 7]. However, a
SASE FEL differs from a spontaneous source in two as-
pects. Firstly, although the amplification process is a linear
amplifier and does not change the statistical properties of
the radiation, it can modify the x-ray pulse duration com-
pared to the electron bunch length due to the exponential
gain and slippage effects. Secondly, a SASE FEL typically
operates in the saturation regime for purposes of intensity
stability. In the saturation regime, the FEL process is very
nonlinear, and statistical fluctuations may not be useful to
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retrive the radiation pulse duration. Recent studies about
the x-ray pulse duration and the statistical fluctation in the
exponential gain regime can be found in Refs. [8, 9].

In this paper, we discuss a new method to measure the
x-ray pulse duration through the analysis of the statisti-
cal properties of the SASE FEL spectra. We first de-
velop theoretically how this method can be applied to x-
ray pulse duration measurements in the exponential growth
regime. Then we show through numerical simulations that
this method is still applicable in the FEL saturation regime
where the machine typically operates. Finally, we apply
this technique to experimental data from the world’s first
hard x-ray FEL, the Linac Coherent Light Source (LCLS)
at various machine settings where the x-ray pulse durations
are measured from 200 fs to 13 fs. This technique can be
applied to any SASE FELs at arbitrary wavelengths as long
as the FEL spectrum can be determined on a single shot
basis.

THEORY

In the exponential growth regime, the SASE FEL be-
haves as a narrow band linear amplifier, which selectively
amplifies a wideband random input signal. The fluctuations
result from the shot noise of the electron beam current

I(t) = (−e)
N∑

k=1

δ(t − tk) (1)

at the undulator entrance, where the arrival times tk are ran-
dom variables with the probability density f(t). The pro-
cess of amplification, within a one-dimensional model, can
be described by a Green function h(t, τ), and the electric
field calculated as the convolution

E(t) =
∫ +∞

−∞
h(t, τ)I(τ)dτ. (2)

For electron beams with constant parameters, the SASE
FEL Green function has the form [10, 11]

hti(t − τ) = A0(z)eik0ze
−iω0(t−τ)− (t−τ−z/vg)2

4s2
t

(
1+ i√

3

)
,

(3)
where A0(z) is the exponential growth factor and is pro-
portional to e

z
lg where lg is the field gain length. To de-

scribe the growth process in case of a non flat current pro-
file, one can model the gain length as function of τ [12].
However, gain mechanism depends on other local beam pa-
rameters. Besides the electron beam current, also quantities
such as transverse emittance, energy spread and undulator
taper contributes to have different growth rates along the
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electron bunch. To model this, we introduce a time depen-
dent gain function htd, and write a time dependent SASE
FEL impulse response function as

h(t, τ) = hti(t − τ)htd(τ). (4)

htd is a slow-varying function on the scale of FEL coher-
ence length.
The spectrum of the electric field is calculated as

Ẽ(ω) =
∫ +∞

−∞
E(t)eiωtdt = (−e)H̃ti(ω)

N∑

k=1

eiωtkhtd(tk)

(5)
where H̃ti(ω) is the Fourier transform of hti(t). Spectral
correlations between two different frequencies can be cal-
culated as

〈
Ẽ(ω′)Ẽ∗(ω′′)

〉
≈ e2NH̃ti(ω

′)H̃∗
ti(ω

′′)X̃(ω′ − ω′′) (6)
〈
|E(ω′)|2|E(ω′′)|2

〉

e4N2|H̃ti(ω′)|2|H̃ti(ω′′)|2 ≈
(
X̃(0)2 + |X̃(ω′ − ω′′)|2

)
(7)

where angle brackets represent an ensemble average,
X(t) = |htd(t)|2f(t) is the x-ray average pulse shape and
X̃(ω) is it’s Fourier function. In the following, without
loss of generality, we can consider X̃(0) = 1. We denote
single-shot spectrum taken after the spectrometer as

S(ω) =
∫ +∞

−∞

e
(ω′−ω)2

2s2
m√

2πsm

|Ẽ(ω′)|2dω′, (8)

where sm is the rms of the spectrometer resolution function
modeled as Gaussian. We define the second order spectral
correlation function as

G2(Δω) =
〈S(ω0 + Δω/2)S(ω0 − Δω/2)〉
〈S(ω0 + Δω/2)〉〈S(ω0 − Δω/2)〉 − 1, (9)

where ω0 is the central frequency of amplification.
Substituting Eq. (6) and (7) into Eq. (9) and using

|H̃ti(ω)|2 ∝ e
− (ω−ω0)2

2s2
a , where sa = 1√

3st
is the FEL band-

width, one obtaines

G2(δω) =
∫ +∞

−∞

e
−(ξ−δωξ0)2

2σ2 |X̃(ξ)|2√
2πσ

dξ, (10)

where σa = sa/ω0, σm = sm/ω0, σ =
√

2 σaσm√
σ2

a+σ2
m

ω0

and ξ0 = σ2
a

σ2
a+σ2

m
ω0, δω = Δω/ω0. Equation (10) can be

particularized for different X(t) shapes. Modelling the x-
ray average pulse shape as Gaussian, with rms length σt,
we have

G2(δω) =
e
− δω2ξ2

0σ2
t

1+2σ2σ2
t

√
1 + 2σ2σ2

t

, (11)

while for a flat top average lineshape with full length dura-
tion T ,

G2(δω) = 2
∫ 1

0

e−ζ2σ2T 2/2(1 − ζ) cos (δωξ0Tζ)dζ,

(12)

the latter can be strightforwardly integrated to obtain a
closed form.
To measure both the average x-ray pulse duration and
the spectrometer resolution, we start from a large set of
recorded spectra. Then the average spectrum is calculated.
By fitting the average spectrum, one obtains σ2

a + σ2
m and

ω0. Thus only the relative spectrometer resolution σm and
the pulse duration are unknown. Finally, the experimental
G2 function is calculated and by fitting it with the analyti-
cal model, we derive both the pulse duration and the spec-
trometer resolution. For typical measurement conditions
σa >> σm, σ ≈ √

2σmω0, ξ0 ≈ ω0, thus the measurement
is insensitive to errors on σa.

The method described above holds true for the exponen-
tial growth regime, since within our linear time dependent
model, the random Gaussian process properties of the in-
put signal are retained [13]. However, in the saturation
regime, first and second order correlations Eq. (6) and (7)
do not hold true in general. The statistical properties in this
regime have been studied by numerical simulations in [14],
and a simplified analytical model is described in [11]. One
conclusion, relevant for our treatment, drawn from these
studies is that the quasi Gaussian statistics is retained for
narrow band instantaneous power fluctuations also in the
saturation regime.

Shot-to-shot fluctuations of the electron bunch energy,
peak current and beam paramenters can have an impact on
the G2 function. We consider a jitter of the central fre-
quency of amplification by letting it fluctuate as a random
Gaussian variable with rms σωω0 and average ω0. Follow-
ing the procedure to derive Eq. (10), we obtain

G2(δω) = K(δω)
∫ +∞

−∞

e
−(ξ−δωξ0)2

2σ2 |X̃(ξ)|2√
2πσ

dξ (13)

where

K(δω) =

(
σ2

a + σ2
m + σ2

w

)
e
− δω2σ2

w
4(σ2

a+σ2
m)(σ2

a+σ2
m+σ2

w)

√
(σ2

a + σ2
m) (σ2

a + σ2
m + 2σ2

w)
(14)

Also a shot-to-shot gain jitter has an impact on the G2

function, we write a measured spectrum as GS(ω), where
G = G+ΔG represents the gain, and calculate the second
order correlation between the spectral intensities S1 and S2

measured at the frequencies ω1 and ω2, as

G2g =
〈(G + ΔG)(S1 + ΔS1)(G + ΔG)(S2 + ΔS2)〉
〈(G + ΔG)(S1 + ΔS1)〉〈(G + ΔG)(S2 + ΔS2)〉

(15)
yielding

G2 =
〈ΔS1ΔS2〉

S1S2

=
G2g(

1 + 〈ΔG2〉
G

2

) − 1 (16)

The effect of the statistical gain can be canceled by nor-
malizing each collected spectrum by its integral over the
frequency. Eventually, since for large values of |ω1 − ω2|,
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〈ΔS1ΔS2〉 = 0, one can evaluate
(
1 + 〈ΔG2〉

G
2

)
as offset

of G2g . This allows to calculate G2 by using Eq. (16).

NUMERICAL SIMULATIONS

We run numerical simulations with a 1D FEL code to
show that the proposed method is also applicable to a large
extent at saturation and in deep saturation. We simulated
a flat top electron beam with an energy of 5.9 GeV, a
peak current of 3 kA, and a 1 mm mrad normalized trans-
verse emittance. The undulator has a period of 3 cm and
a strength parameter of 3.5, yielding a radiation wave-
length of 0.8 nm and saturation occurring close to 40 m.
4000 independent shots were simulated for a 30 μm elec-
tron bunch and 2000 independet shots were simulated for
a 3 μm electron bunch. Two different spectrometer reso-
lutions σm, 10−4 and 2 × 10−4 have been used to show
that prior knowledge of the spectrometer resolution is not
needed for the pulse duration measurement. Figure 1 shows
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Figure 1: Simulated measurement of x-rays pulse duration
vs undulator distance. (Squares) spectrometer resolution
σm = 10−4, (Diamonds) spectrometer resolution σm =
2 × 10−4.

the simulated pulse duration measurement for both elec-
tron bunch lengths and spectrometer resolutions. For the
short bunch case, the slippage and the edge effects played
a more important role as compared to the longer bunch,
showing that the method can measure the x-ray pulse dura-
tion evolution even for ultra-short bunches. Spectrometer
resolutions have been retrieved as (1.01 ± 0.01) × 10−4

and (2.05 ± 0.05) × 10−4 for the long bunch case, and as
(0.98 ± 0.03) × 10−4 and (1.98 ± 0.09) × 10−4 for the
short bunch case.

EXPERIMENTAL RESULTS

The experimental demonstration of the method was per-
formed at the LCLS to measure soft x-rays pulse durations.
The machine was set to operate at 1.5 keV photon energy

and the electron charge was set to 250 pC. The spectra
were recorded by the LCLS soft x-rays spectrometer [15].
For each machine setting around 40 000 spectra have been
recorded. For each spectrum we have also acquired quanti-
ties such as electron beam energy and charge, peak current,
trajectory information and x-ray pulse energy. These quan-
tities have been used to select a subset of the collected spec-
tra to analyze. In particular electron beam energy and peak
current, were used to select a subset with similar pulse du-
rations and aligned spectra. Aligned spectra are needed to
minimize the effect of the central frequency jitter described
in Eq. (14). A typical subset contained around 5% of the
originally recorded data. To reduce the effect of the FEL
intensity jitter, measured spectra were normalized by their
integral over frequency. For our analytical treatment we
have assumed full transverse coherence. FEL simulations
suggest that the transverse coherence decreases after satu-
ration to about 50%-60% [16]. Additional analysis of Gen-
esis simulations [17] have shown that the degree of trans-
verse coherence in the vertical and the horizontal directions
are ≈ 80% and ≈ 70% respectively. To reduce the effect
of the transverse modes on the statistical analysis, from the
2D recorded spectral images, only the subset of the data on
the horizontal coordinate has been used. This is equivalent
to using a vertical slit for improving the transverse coher-
ence in the horizontal direction.

During our experiments we measured the x-ray pulse du-
rations for different machine conditions. In particular, we
varied the undulator length and the electron bunch peak
current. To obtain shorter x-ray pulses, we also applied
the slotted foil technique to change the effective electron
bunch length that was able to lase [12].

In the first experiment we measured the pulse duration
for different undulator lengths. The peak current was set to
3 kA, which yields an 83 fs electrons bunch length for a flat
top shape. Pulse duration measurements are presented in
Tab. 1 showing that x-ray pulses were shorter than electron
bunches and that, with our post saturation taper configu-
ration, the pulse duration increases when the deep satura-
tion is reached. The measured spectrometer resolution was
similar for the different analyzed data sets, and was equal
to σm = (1.00 ± 0.04) × 10−4. The designed spectrom-
eter resolution at 1.5 keV is 0.85 × 10−4 [15]. Measure-
ments performed at LCLS pointed out that the SXR instru-
ment resolution at that photon energy should be closer to
1.4 × 10−4 [18]. The discrepancy could be attributed to
the fact that this resolution was derived from an averaged
spectra, and it could be influenced by such instabilities as
vibrations and photon beam jitters. The resolution derived
by our method is based on the intensity interferometry prin-
ciple. Therefore, it is much less sensitive to such instabili-
ties. Further in our analytical model we have considered a
Gaussian resolution function of the spectrometer. A differ-
ent shape for the resolution function could also contribute
to the differences in the resolution derived from the two
methods.

In the second experiment pulse durations were measured
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Table 1: Measured x-ray pulse duration vs undulator dis-
tance. Pulse duration expressed as full length flat top.

Undulator Measured x-ray Spectrometer
Distance [m] full length [fs] measured σm

43.5 51 1.02 × 10−4

53.6 48 0.99 × 10−4

63.5 49 0.98 × 10−4

73.7 50 1.03 × 10−4

83.7 59 0.99 × 10−4

93.8 73 1.04 × 10−4

for different peak currents at a fixed electron bunch charge.
For these data sets, undulator taper has been applied in or-
der to maximize the output power with 28 undulator seg-
ments present. Experimental results have been collected
for the peak current of 1.5 kA to 3 kA. Figure 2 shows
the measured x-ray pulse duration compared to the electron
bunch length in the hypothesis of a flat top electron bunch
distribution. Higher peak current electron bunches yield
clearly shorter average FEL pulses. Finally, we measured

1.5 2 2.5 3

80

100

120

140

160

180

200

Peak Current [kA]

Pu
ls

e 
du

ra
tio

n 
fu

ll 
le

ng
th

 f
la

t t
op

 [
fs

]

 

 

Electrons (Flat top model)
Measured pulse duration

Figure 2: (Diamonds) Measured x-rays pulse duration vs
different peak currents, duration expressed as flat top full
length. (Solid) Electrons bunch length for a 250 pC flat top
profile as function of the peak current

shorter x-rays pulse durations by controlling the electron
bunch length using the slotted foil technique. The shortest
pulse duration was measured for the slotted foil configura-
tion corresponding to active electron bunch length of 10 fs
FWHM [19]. With this setting, the measured average x-ray
pulse duration was 13 fs FWHM.

CONCLUSION
We have developed a new approach for measuring the

average pulse duration of SASE FEL x-ray pulses by us-
ing the statistical characteristics in the spectral domain.

Table 2: Electron bunch length controlled using the slotted
foil and measured x-ray pulse duration as FWHM Gaus-
sian. Electron bunch length is calculated with the formula
presented in [19]. σm is the spectrometer resolution mea-
sured for each dataset.

Electron bunch x-ray Spectrometer
FWHM [fs] FWHM [fs] measured σm

10 13 0.86 × 10−4

18 24 0.90 × 10−4

28 39 0.88 × 10−4

56 52 0.85 × 10−4

The method allows to measure the pulse duration without
prior knowledge of the spectrometer resolution and can be
also used to measure the spectrometer resolution as a cross
check to other direct experimental techniques. By analyz-
ing numerical simluations, we shown that the method is
applicable also in the nonlinear region of the SASE ampli-
fication process. Experimental soft x-rays pulse durations
measurements at LCLS were consistent with the manipu-
lated electron bunch length.
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