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Abstract 
    To simplify the LCLS operation and further enhance 
the injector performances, we are evaluating the various 
parameters including the photocathode drive laser system. 
Extensive simulations show that both the projected and 
time-sliced emittances with spatial Gaussian profiles 
having reasonable tail-cut are better than those with 
uniform one. The simulated results are also supported by 
theoretical analyses. In the LCLS, the spatial uniform or 
Gaussian-cut laser profiles are conveniently obtained by 
adjusting the optics of the telescope upstream of an iris, 
used to define laser size on the cathode. Preliminary beam 
studies at the LCLS injector show that both the projected 
and time-sliced emittances with spatial Gaussian-cut laser 
are almost as good as, although not better than, those with 
uniform one. In addition, the laser transmission through 
the iris with the Gaussian-cut profile is twice with 
uniform one, which can significantly ease LCLS copper 
cathode/laser operations and thus improve the LCLS 
operation efficiency. More beam studies are planned to 
measure FEL performances with the Gaussian-cut in 
comparison with the uniform one. All simulations and 
measurements are presented in the paper.        

OVERVIEW 
   The drive laser requirements are usually set to very 
stringent conditions for the planned X-ray Free Electron 
Laser (FEL) projects, such as temporal and spatial profiles 
required to be uniform, to achieve an ultra-high brightness 
electron beam from photocathode RF gun system. To get 
a uniform temporal profile, laser beams mostly have to be 
stacked to get for a few ps pulse length, which certainly 
make laser system complicated and thus probably 
unreliable. The LCLS was to stack 3 ps S-polarization and 
P-polarization Gaussian laser beams to obtain about 6.5 ps 
final temporal uniform laser beam shining on the cathode. 
To get a uniform spatial laser profile, the telescope optics 
upstream of an iris, used to define laser size on the 
cathode, has to be properly adjusted with severely 
sacrificing drive laser transmission through the small iris. 
The LCLS is making efforts to simplify the drive laser 
systems without compromising high brightness electron 
beam performances. In spring of 2010, one of two stacked 
lasers was removed. Since then only single laser with ~3 
ps Gaussian distribution is being used for the routine 
operations, which generates similar or even better electron 
beam in comparison with 6.5 ps stacked uniform laser 
beam [1]. In late of 2010, the extensive simulations 

indicated that the emittance could be further improved 
with spatial Gaussian-cut drive laser distribution rather 
than spatial uniform one. It is well-known that to obtain a 
uniform laser on the cathode the telescope upstream of the 
iris has to make laser beam much bigger than the iris size 
and thus most part of laser beam has been cut away 
through the small iris. However, to generate a Gaussian-
cut laser beam the telescope only needs to make the laser 
size comparable to the iris size so a larger laser 
transmission through the iris is expected. The spatial 
Gaussian-cut may have advantages of easing the LCLS 
copper cathode/laser operations as well as a better 
emittance. 
     This paper will present extensive simulations using 
ImpactT code [2], theoretical analyses, and preliminary 
experimental results at the LCLS injector.   

SIMULATIONS AND THEORY  
     A fully 3D code, ImpactT, is used to track particles 
taking into account space charge forces, short range 
wakefields and some other effects. All parameters applied 
in the simulations except spatial profiles are the same as 
the ones operated in the LCLS, such as 3 ps FWHM of 
temporal Gaussian laser, 115 MV/m of gun gradient on 
the cathode, 30 of laser launch phase from zero-crossing, 
and 250 pC of bunch charge.  

Simulated Projected and Slice Emittances 
     The edge-to-edge laser beam size on the cathode is set 
to 1.2 mm for 250 pC bunch charge in the LCLS practical 
operations to acquire an optimum emittance. In preparing 
all spatial laser distributions for the simulations, all of 
them are truncated at the iris radius, 0.6 mm, same as 
LCLS realistic parameter. We start with pure Gaussian 
distributions but with different rms size x (same for y) 
values to generate uniform and Gaussian-cut distributions 
on the cathode. For example, for generation of a spatial 
uniform beam, a Gaussian beam with much larger rms 
size than iris radius - 0.6 mm, 6.0 mm for example, is 
chosen. Gaussian distributions with smaller rms sizes 
comparable to the iris radius, from 0.3 mm to 0.6 mm, 
truncated at 0.6 mm are used to generate different spatial 
Gaussian-cut laser beams. Figure 1 shows the spatial laser 
profiles (line-out intensity) used in the ImpactT 
simulations, where x=6.0 mm means for spatial uniform 
profile while x=0.3-0.6 means for different Gaussian-cut 
profile. The projected and time-sliced emittances at 135 
MeV of beam energy are simulated with 250 pC of bunch 
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SUMMARY AND FUTURE WORK 
     Extensive simulations show that the emittance can be 
improved with certain spatial Gaussian-cut distribution 
rather than spatially uniform beam. The analytical 
analyses show that the transverse space charge force with 
certain Gaussian-cut distribution is more linear than the 
uniform one. The preliminary experiment performed at 
the LCLS injector show that the projected and slice 
emittances with the Gaussian-cut distribution are as good 
as, although not better than, that with uniform one. 
Asymmetry rather than symmetry Gaussian-cut profile in 
the practical operations is probably one of reasons to wash 
out the emittance improvement. The laser transmission 
through the iris with the Gaussian-cut distribution is 
double that with the uniform one, which definitely eases 
the LCLS laser/cathode operations and improve the 
overall operation efficiency. Future work is to compare 
FEL performances between spatial uniform and Gaussian-
cut beams.  
     We would like to thank LCLS physicists and operation 
team for the contributions and strong support. The work is 
supported by DOE under contract No. DE-AC02-
76SF00515. 
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