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Abstract 
Modern ERL projects use superconductive accelerating 

RF structures. Their RF quality is typically very high. 
Therefore, the RF voltage induced by electron beam is 
also high. In ERL the RF voltage induced by the 
accelerating beam is almost canceled by the RF voltage 
induced by the decelerating beam. But, a small variation 
of the RF voltage may cause the deviations of the 
accelerating phases. These deviations then may cause 
further voltage variation. Thus, the system may be 
unstable. The stability conditions for ERL with one 
accelerating structure are well known [1, 2]. The ERL 
with split RF structure was discussed recently [3, 4]. The 
stability conditions for such ERLs are discussed in this 
paper. 

 INTRODUCTION  
The scheme of an ERL with two accelerating structures 

is shown in Fig. 1. 
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Figure 1: Scheme of ERL with two linacs. 

 
Electrons are injected to the linac 1. After two passes 
through linac 1 and linac 2 they are used, for example, in 
undulators. After that electrons are decelerated. 

There are four electron beams in each linac 
simultaneously. Each beam induced large voltage in the 
linac, but the sum is not so large. If the phases of the 
beams vary, the sum voltage also vary, and initially small 
phase deviation may increase due to the dependence of 
flight times through arcs on the particle energy. This 
longitudinal instability is considered in our paper. 

THE VOLTAGE EQUATIONS  
To simplify the picture, consider each linac as one RF 

cavity. Its equivalent circuit is shown in Fig. 2. 
The gap voltage expression 

  dtRUdtdUCIIdLU gb  , Ib and Ig are 

the currents of the beam and of the RF generator, leads to 
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Figure 2: Equivalent circuit of the RF cavity. 
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Taking the effective voltage on the linac with number α 

in the form )Re( tieU 


  (ω is the frequency of the RF 

generator), one obtains: 
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QCL
  is the resonant 

frequency,  CLRQ  >>1 is the loaded 

quality of the cavity, CLQR   /  and R  

are the characteristic and the loaded shunt impedances for 

the fundamental (TM010) mode, and  gb II  and  are the 

complex amplitudes of the beam and (reduced to the gap) 
generator currents correspondingly. We are interested in 

the case of constant gI . The beam currents bI  

depends on all Uα due to phase motion. Linearization of 
Eq. (2) near the stationary solution  
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Strictly speaking, Ib depends on the values of U at 
previous moments of time, so Eq. (4) is valid only if the 

damping times Q  is much longer than the time of 

flight through the ERL.  

THE STABILITY CONDITIONS 

Considering the exponential solutions  2exp t  of 

system of linear differential equations Eq. (4), one can 
find the stability conditions. Indeed, the system Eq. (4) 
corresponds to the system of the linear homogeneous 
equations UMU  δ  with the consistency condition 

0 EM  . Re(λ) < 0 for all roots of this equation (i. 

e., eigenvalues of the matrix M) is the stability condition. 
The stability condition for ERL with one linac 

was derived in paper [2]. In this case 
























U

I

QU

I

Q

U

I

QU

I

Q

bb

bb

Im

Im1

Re

Im
Im

Re

Re

Re1













M  (5) 

and the characteristic equation is 

  02  MMTr    (6) 

According to Eq. (5) the stability condition  is 
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One can say, that the beam “active conductivity” 

  2ImImReRe UIUI bb    has not to 

exceed the linac active conductivity   1Q . 

For the ERL with two linacs 
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      (8) 
and the characteristic equation is (see, e. g., [5]) 
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4321
4 AS  are the sums of main 

minors of the matrix M. The necessary conditions for 
stability (Re(λ) < 0 for all four roots of Eq. (9)) is 
positivity of all the coefficients of the polynomial Eq. (9). 
In particular, the only independent on detunings ξ1 and ξ2 
condition S1 < 0 gives 
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      (10) 
The sufficient conditions are given by the Liénard-

Chipart criterion [5]. It requires the positivity of of all the 
coefficients of the polynomial Eq. (9) and the third 
Hurwitz minor 
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Coefficient S2 depends on detunings as 
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Therefore the condition S2 > 0 is satisfied for large 
enough detunings 
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the condition S4 > 0 is also satisfied for large enough 
detunings. 

In the simplest case of the isochronous ERL arcs the 
conductivity matrix is zero. Then it is easy to proof, that 
all stability conditions are satisfied. 

As the qualities of the superconducting cavities are 
very large, it is interesting to consider the opposite 
limiting case, neglecting small terms 1/Q1,2 in the matrix 
Eq. (8). Then all stability conditions do not depend on the 
beam current. They depend only on the ratio ρ1/ρ2 and the 
beam conductivity matrix, which is fully defined by the 
ERL magnetic system. 

THE CONDUCTIVITY MATRIX 
To proceed further, we have to specify the elements of 

the beam conductivity matrix in the stability conditions. 
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The complex amplitude of the beam current Ib may be 
written in the form  
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where I is the average beam current, 2n+α-1 is the 
equilibrium phase for the n-th pass through the resonator 
with the number α (α = 1, 2), and N is the number of 
orbits for acceleration. The small energy and phase 
deviations n and n obey the linear equations: 
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where 
ndE
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
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

is the longitudinal dispersion of the n-th 

180-degree bend. The initial conditions for the system of 
Eqs. (16) and (17) are, certainly, 0=0 and 0=0, if we 
have no special devices to control them for the sake of the 
beam stabilization, or other purposes. The solution of Eq. 
(16) and Eq. (17) may be written using the longitudinal 

sine-like trajectory Snk and its “derivative” Snk
'  (elements 

56 and 66 of the transport matrix). These functions are the 
solutions of the homogenous system  
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with the initial conditions Sk,k = 0, S'k,k = 1. Then 
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Substitution of Eq. (20) to Eq. (15) gives 
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Then the necessary condition of the stability Eq. (10) may 
be written as 
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For an ERL it needs to satisfy (at least approximately) 

the recuperation condition  
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For the longitudinal stability it also needs to have 

longitudinal focusing for most of passes through the linac 
(see Eq. (15, 16)): 
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(if all ( / )dt dE n  0 ). Conditions Eq. (24) and Eq. 

(25) may be satisfied simultaneously, if 
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Conditions Eq. (27) affords equality of beam energies 
after n-th and (4N-n)-th passes through a linac. 

To make the stability condition Eq. (23) more explicit, 
consider a simple example. Assume that equilibrium 
phases are equal during acceleration. In this simplest case 
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10  Nn . Eq. (27) defines the equilibrium phases 
for deceleration. Then Eq. (23) gives 
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SIMULATIONS  
Numerical calculations were made for proposed scheme 

of ERL with two accelerating structures (the simplest 
scheme is shown in Fig. 1). Parameters of accelerating 

structures: ,10 6
21  QQ  ,M401   

,M902   9103.12   Hz, 10I mA, 

8.01 U GV, 8.12 U GV. Considering the magnetic 

structure with acceptable growth of the horizontal 
emittance [6, 7], one can check the stability conditions 
Eq. (11). This work is in progress yet. 

CONCLUSION  
In this paper we derived the criterion of the longitudinal 

stability for the ERL with two accelerating structures. 
Further numerical investigations of this criterion are 
planned. 
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