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Abstract

A general modeling framework is introduced that allows
for the solution to magnetic field perturbations due to me-
chanical and magnetic tolerances in hybrid undulators. For
example, both geometric pole errors and permanent mag-
net block geometry and strength errors can be considered.
Of particular significance is the scaling of the various er-
rors with variations in the gap of the device. In this work,
the perturbation analysis is presented along with specific
examples of errors found in hybrid undulators.

INTRODUCTION

The analysis of magnetic field errors due to fabrication
and assembly tolerances in hybrid undulators is critical to
their successful application for x-ray Free Electron Lasers.
This is especially true for hybrid undulators with a variable
gap due to the variation in the scaling of magnetic field per-
turbations depending on the nature of the fabrication error.
The results of this analysis will be used to determine how
how the fabrication and assembly tolerances relate to the
magnetic field requirements for LCLS-II (see [1]), a ma-
jor upgrade to the Linear Coherent Light Source (LCLS).
In this work, a perturbation model is developed to study
the effect of fabrication tolerances on magnetic field errors.
The approach follows the theory developed by Halbach for
the analysis of insertion devices [2]. This theory has pre-
viously been applied for the study of magnetic field pertur-
bations due to some specific undulator errors [3, 4]. Here
an approach is considered that allows for the variation in
the energization of a finite number of poles without being
restricted to periodicity conditions over a quarter period of
the device. In the following sections the perturbation analy-
sis is presented along with some examples of specific errors
found in hybrid undulators.

ANALYSIS OF HYBRID MAGNETS

In this section, an overview of the analysis of hy-
brid magnets composed of permanent magnet (PM) ma-
terial and infinite permeability field shaping surfaces is
presented. For a more detailed review of this approach,
the reader is referred to the work by Schlueter [3]. In
this model, the PM material is equivalently replaced by
charge sheets located at appropriate surfaces on the PM
block. This is an exact model for uniformly magnetized
PM blocks with relative permeability, μ = 1. Figure 1

∗This work was supported by the Director, Office of Science, of the
US Department of Energy under Contract No. DE-AC02-05CH11231.

† darbelaez@lbl.gov

shows a schematic of the approach followed in the mod-
eling of hybrid magnets. On the left, the hybrid magnet
model is shown, which is represented by two iso-scalar po-
tential surfaces with a nearby charge, Q. Here, surface 2
is a reference surface where the scalar potential chosen to
be V = 0 without loss of generality. A solution to this
problem, which satisfies Maxwell’s equations in space and
has zero net flux entering surface 1 is desired. The solution
to this problem can be decomposed into direct and indirect
fields. The direct fields are defined as those that emanate
from the charge Q and are deposited onto surfaces 1 and
2 when both surfaces are on zero scalar potential. Indirect
fields are generated by the difference in scalar potential be-
tween surfaces 1 and 2 with the chargeQ no longer present.

Figure 1: Hybrid magnet model consisting of constant
scalar potential surfaces with a nearby charge Q.

Using the decomposition of direct and indirect fields, a
solution to the hybrid magnet model can be obtained. First,
the direct flux into surface 1, Φ1

d, is obtained using the
equation,

Φ1
d =

∫
∂Ωρ

Vi(r)ρeqda

Vi(r1)
, (1)

where ∂Ωρ is the domain on which a surface with charge
density ρeq lies, and Vi(r) is the solution to a boundary
value problem (BVP) for the Laplace equation, ∇2Vi = 0,
with prescribed boundary conditions Vi(r1) = V0 on sur-
face 1 and Vi = 0 on surface 2. Note that the choice of
V0 �= 0 is arbitrary due to the linearity of the problem. For
a single charge, equation 1 reduces to QVi(rQ)/V0 where
rQ is the position of charge Q. A rigorous derivation of
equation 1 can be found in [3]. The indirect flux into sur-
face 1 can be defined as Φ1

i (V0) = −CV0, where C is the
capacitance, which is a constant that is determined by only
the geometry of the iso-scalar potential surfaces. The ca-
pacitance, C = −Φi(V0)/V0, is determined by calculating
the flux into surface 1,

∫
∂Ω1

∇Vi · nda , where Vi is the
solution to the BVP, ∇2Vi = 0, with boundary conditions
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Vi(r1) = V0 (the choice of V0 is arbitrary) on surface 1 and
Vi = 0 on surface 2. By requiring that there be zero net
flux through surface 1 (i.e. Φ1

d + Φ1
i = 0), the solution for

the scalar potential on this surface is given by

V1 =
Φ1

d

C
. (2)

In summary, the scalar potential of the surfaces in a hybrid
magnet with infinite permeability poles can be determined
by: (1) solving a BVP for the Laplace equation with an ar-
bitrary potential V0 applied at surface 1, (2) integrating the
potential over the PM material charge sheets and normaliz-
ing by V0 to determine direct flux, and (3) determining the
total indirect flux by integration of the normal component
of the magnetic field over the pole surface and normalizing
by V0 to find the capacitance.

HYBRID UNDULATOR MODEL

In this section, the solution for a hybrid undulator with
infinite permeability poles and uniformly magnetized PM
blocks (with μ = 1) is presented. Clearly, the symmetry of
the problem can be used to find a solution for the potential
of the pole surfaces by considering only one quarter of a
period on either the top or bottom section of the undulator.
However, for the solution of pole or PM block perturba-
tions (see following section) it is desirable to consider a
sufficiently large section of the undulator. For example, a
pole vertical position perturbation applied to a quarter pe-
riod model would be equivalent to a change in the gap of
the entire device. However, by considering a larger section
of the undulator, a vertical position perturbation of a single
pole can be analyzed.

Figure 2: Hybrid undulator model consisting of a number
of poles and PM blocks.

Figure 2 shows a diagram of the undulator model that
is to be solved. The poles are represented by solid lines
which are on a constant scalar potential Vn, where n is the
index of each particular pole surface. The PM blocks are
represented by charge sheets with charge density ρeq =
±Br, where Br is the remanent field of the PM material.
In the diagram, the charge sheets are represented by the +
and − symbols for positive and negative charge sheets. On

the remaining boundaries (represented by dashed lines in
figure 2), the boundary condition ∂V/∂n = 0 is applied.

To obtain a solution to this hybrid undulator model the
approach presented in the previous section is used. How-
ever, since multiple iso-potential surfaces are considered,
the direct and indirect fluxes are represented by vectors
while the capacitance is represented by a matrix. For an
undulator model with Np poles the flux balance equation is
given by

[C]{V } = {Φd}, (3)

where [C] is the Np × Np capacitance matrix, {V } is an
Np× 1 vector that contains the scalar potential of each sur-
face Vn, and {Φd} is the Np × 1 direct flux vector. As in
the previous section, the direct flux and capacitance are de-
termined from the solution to ∇2V m

i = 0. In this case, the
boundary condition V m

i (rm) = V0 is applied on one pole
surface m while all other pole surfaces are on scalar po-
tential V m

i = 0. The direct flux is then computed using an
equation analogous to equation 1 with the subscript and su-
perscript “1” replaced by “m”. The components of the ca-
pacitance matrix,Cmn, are given by, − 1

V0

∫
∂Ωn

∇V m
i ·nda,

which is the flux through pole surface n while surface m is
on scalar potential V0. Note that [C] is a symmetric matrix
with Cmm = −∑

n�=m Cmn, since the total flux into all
surfaces must be zero.

PERTURBATION ANALYSIS

In this section a general analysis for pole position and di-
mension errors and for PM block errors is presented. Start-
ing with a equation 3, a perturbed problem can be written
as

([C] + [δC]) ({V }+ {δV }) = {Φd}+ {δΦd}, (4)

where [δC] is the perturbation of the capacitance matrix,
{δΦd} is the perturbation to the direct flux, and {δV } is
the perturbation to the equilibrium potential of the poles.
PM block errors are characterized by perturbations to the
strength or location of charge sheets, which leads to a per-
turbation of the direct flux term. Pole positioning or dimen-
sion errors are characterized by changes in the geometry of
the scalar potential surfaces, which lead to a perturbation
of the capacitance matrix.

PM Block Perturbation

PM block perturbations are modeled as excess charge
sheets, which lead to a perturbation in the direct flux. Fig-
ure 3 shows an example where the height of a PM block is
too large which leads to longer charge sheets than in the
original unperturbed case. The total contribution to the
direct flux is then given by the sum of the direct flux in
the original problem, {Φd}, and the direct flux in the per-
turbed problem, {δΦd}. To compute the m’th component
of {δΦd}, δΦm

d , the solution to the BVP, ∇2V m
i = 0, is

obtained with boundary conditions V m
i (rm) = V0 on pole

WEPA24 Proceedings of FEL2011, Shanghai, China

ISBN 978-3-95450-117-5

388C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s/

C
C

B
Y

3.
0

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)

FEL Technology



surface m and V m
i = 0 on all other pole surfaces. Equa-

tion 1 is then used, where Ωρ is the domain on which the
excess charge density lies and the subscript and superscript
“1” replaced by “m”. The perturbation in the direct flux
due to a PM block error will lead to a change in the equi-
librium potentials of the undulator poles. The solution to
the potential perturbation is given by

[C]{δV } = {δΦd}, (5)

where the higher order term, ([δC]{δV }), is neglected.

Figure 3: Diagram of a PM block perturbation, which is
modeled using excess charge sheets.

Pole Perturbation

Pole perturbations are characterized by geometric
changes to the poles, which lead to a perturbation of the
capacitance matrix. The perturbation to the capacitance
matrix could be determined by generating two solutions
(one before the perturbation and one after) and subtract-
ing the capacitance matrix of the second solution from the
first. However, this is a cumbersome process since two sets
of geometries have to generated and meshed for the BVP
solver. Furthermore, a fine mesh may be necessary to cap-
ture the differences between the two solutions when small
perturbations are performed. A different approach is pur-
sued here, where the geometry of the undulator domain is
fixed and the boundary values of the perturbed geometry
are modified. This approach relaxes the high density mesh
requirement since the perturbation problem can be solved
directly, and it circumvents the need to generate multiple
meshes.

Figure 4 shows a diagram of the boundary value per-
turbation approach for geometric perturbations of the iso-
scalar potential surfaces. On the left, the total problem is
shown which describes the evaluation of one row (or col-
umn due to symmetry) of the capacitance matrix. Here,
the surface of the upper central pole is modified so that it
protrudes further to the right than the original pole. In the
calculation of the m’th row of the capacitance, a solution
for an indirect scalar potential, V m

i (r), is obtained with
boundary conditions V m

i (rm) = V0 on pole surface m and
V m
i = 0 on all other surfaces. For a perturbed pole with in-

dex n, a first order approximation can be introduced where
the new pole geometry is replaced by the original pole ge-
ometry. The boundary value on the faces that are shared

with the original pole is then set to V m
i (rn) = 0 for m �= n

and V m
i (rn) = V0 for m = n, while the remaining face is

on a perturbed scalar potential, V m
i (rn) + (∂V m

i /∂x)δx.
Here, x is oriented with the perturbation direction, while
δx represents the size and direction of the perturbation.

Figure 4: Diagram of the boundary value perturbation ap-
proach for pole errors.

The perturbation in the capacitance matrix due to a pole
error will lead to a change in the equilibrium potentials of
the undulator poles. The solution to the potential perturba-
tion is given by

[C]{δV } = −[δC]{V }, (6)

where once again the higher order term, ([δC]{δV }), is
neglected. Equation 6 can be evaluated by first forming
the perturbation capacitance matrix [δC], however, it is
more convenient to calculate [δC]{V } directly. As is de-
picted in the right side of figure 4, the perturbation ma-
trix is determined by setting all surfaces on V = 0, ex-
cept for the perturbed surface which is placed on scalar
potential (∂V m

i /∂x)δx. The m’th component of the vec-
tor [δC]{V } is determined by calculating the indirect flux
into surface m with the perturbed surface on scalar poten-
tial δx

∑
m ∂Vm

i /∂x, while all other surfaces are on po-
tential V = 0. Here V m

i corresponds specifically to the
solution of ∇2V m

i = 0 with surface m on prescribed po-
tential V = V m

0 (V = 0 for all other surfaces), where V m
0

is the m’th component of the vector obtained from the so-
lution of equation 3. The sum

∑
m ∂V m

i /∂x is then given
by Bi

x(rp), where Bi is the total indirect field for the orig-
inal problem (see figure 2), rp is the position of points on
the perturbed surface, and x is oriented along the direc-
tion of the surface perturbation. In summary, the vector
([δC]{δV }) is determined by calculating the flux through
the poles with the perturbed surface on scalar potential
Bi

x(rp)δx while all other pole surfaces have prescribed po-
tential V = 0.

EXAMPLES

In this section, some examples of the different error per-
turbations that can be analyzed with this model are pre-
sented. Figure 5 shows a limited set of the types of errors
that are expected in an undulator. These include: (a) Br

strength errors for the PM blocks, (b) pole position errors
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along the axis, (c) Br angle errors, and (d) vertical pole po-
sition errors. The figure depicts how each of these errors
would be analyzed using the model described in this work.
For the examples analyzed in the remainder of this work,
the following parameters are used: the undulator period is
λu = 32 mm, Br = 1.32 T, and the minimum and maximum
gap are 7.2 mm and 20 mm respectively. The calculations
are performed using the magnetostatic finite element code
TOSCA in a two-dimensional setting. However, it is noted
that a specialized magnetostatic code is not necessary for
this model since only the solution to a BVP for the Laplace
equation is required.

Figure 5: Example of possible types of errors in a hybrid
undulator: (a) Br strength errors for the PM blocks, (b)
pole position errors along the axis, (c) Br angle errors, and
(d) vertical pole position errors.

Figure 6 shows the result for the normalized on-axis ver-
tical magnetic field error for a 0.2% block strength error
(see (a) in figure 5) at two different gaps (7.2 mm - red
line, 20 mm - blue line). The normalization factor is the
peak on-axis field at the corresponding gap. The on-axis
error field for this example is composed of only indirect
fields, which are derived from the calculation of the poten-
tial perturbation vector, {δV }. In figure 6 the PM block
error is located at x = 0 while the poles are located where
the local maxima occur in the vertical field.

Figure 7 shows the result for the normalized on-axis ver-
tical magnetic field error for an axial pole position error
with a magnitude of 25 μm (see (b) in figure 5) at two dif-
ferent gaps (7.2 mm - red line, 20 mm - blue line). For this
example, the on-axis error field is composed of both the
indirect fields which are derived from the potential pertur-
bation vector, {δV }, as well as the field that is generated
by the perturbed scalar potential surfaces. In this case, the
pole error is located at x = 0, and the remaining poles are
located where the local maxima occur. For both of these
examples the field extends out further for the larger gap
leading to larger normalized peak magnetic field integral
values.
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Figure 6: Normalized magnetic field error for a 0.2% block
strength error at 7.2 mm (red) and 20 mm (blue) gaps.
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Figure 7: Normalized magnetic field error for a 25 μm axial
pole position error at 7.2 mm (red) and 20 mm (blue) gaps.

CONCLUSIONS

In this work, a model is developed to investigate the ef-
fect of mechanical and magnetic tolerances on magnetic
field errors for hybrid undulators. The approach that is
used allows for a large variety errors to be modeled un-
der the same framework. For the examples presented here,
a two-dimensional analysis is performed. This restricts the
solutions to have zero net on-axis vertical magnetic field in-
tegrals for all of the possible errors. However, the modeling
framework is general (it only requires a solution to a BVP
problem for the Laplace equation) and is not restricted to
two-dimensional calculations. The evaluation of the mag-
netic field errors in a three-dimensional setting will be the
subject of future work.
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