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Abstract 
We have constructed a planer undulator that is Halbach 

type composed of permanent magnet blocks. The period 
length of the undulator and the number of periods are 100 
mm and 25, respectively. The vibrating wire method is 
studied to measure the periodic magnetic field of the 
undulator. A thin copper-beryllium wire is placed on the 
beam axis in the undulator.  An AC current flow is applied 
in the wire, then by measuring amplitudes and phases of 
standing waves excited on the wire, we can reconstruct 
the magnetic field distribution along the wire numerically. 
In this paper, we discuss relations between reproducibility 
of the undulator field and the mode harmonics number 
incorporated into the reconstruction of undulator field. 

INTRODUCTION 
A test accelerator for a terahertz source project (t-

ACTS) has been progressed at the Electron Light Science 
Centre, Tohoku University, in which a generation of 
intense coherent terahertz radiation from the very short 
electron bunch will be demonstrated [1,2]. A narrow-band 
coherent terahertz radiation using an undulator has been 
considered to be implemented. We have constructed a 
planer undulator for the THz radiation.  

It is important to know a magnetic characteristic of an 
undulator before installation to estimate a beam orbit in 
an undulator and a radiation power from electron beam. 
Magnetic field of the THz undulator was measured by 
Hall probes in the manufacturing company. But this 
measuring with Hall probe requires high precision 
mechanical positioning systems and a long-linear stage to 
move the Hall probes along the undulator. The 
measurement system is very expensive and may not be 
easily available in our laboratory. Therefore, we started to 
study and develop a suitable method for the THz 
undulator. 

Several methods are commonly used for magnetic field 
measurement of an undulator magnetic field. These are 
mapping with Hall probes, scanning with rotating coils 
[3], the pulsed wire technique [4], and so on. Though 
mapping with Hall probes can provide enough accuracy,  
require high precision mechanical positioning systems. 
Using the rotating coil, an integrated magnetic field on 
the rotating axis can be measured precisely. In case of 
undulator, an amount of beam deflection due to magnetic 
field error can be derived from this measurement. 
However, the rotating wire can not measure a distribution 
of a periodic undulator field. The pulsed wire method 
does not require special equipment, so that the 

arrangement can be made simple. However, a serious 
problem is caused by the distortion of the pulse signal 
during its propagation along the wire. For this reason, this 
method is unbefitting for longer undulators.  

The vibrating wire method [5-7], also does not require 
special equipment, because it uses as a probe wire 
stretched through the measured magnetic field, the 
apparatus can be made simple. This method can measure 
the periodic undulator field and we can find a local 
magnetic error by comparing with ideal magnetic field 
distribution. In the case of the undulator having large 
number of periods or short period length, the number of 
modes which we have to measure increases and the 
vibration frequency will also become high. Therefore, this 
vibration wire method is unsuitable for the undulator has 
a large number of periods or a short period length. 
Conversely, the vibrating wire method suits to measure 
the undulator having a small number of periods and a 
long period length. 

TERAHERTZ UNDULATOR 
The THz undulator is a planer undulator of Halbach 

type made only of permanent magnet blocks [2]. The 
longitudinal magnetized blocks were installed at both 
ends of the undulator in order to correspond an axis of 
injection of electron beam with the magnetic center of 
undulator. Table 1 shows parameters of our undulator for 
coherent terahertz radiation. Figure 1 shows the magnetic 
field distribution of the undulator Bu(z) at the gap of 54 
mm measured by Hall probes. Undulator gap moves 
horizontally and the electron beam oscillates in vertical 
plane. Height of the beam axis is 750 mm from the floor. 
The gap changes 44~110 mm, while actual experiment 
has been considered to be implemented at gap = 54~68 
mm, because the undulator has been developed for the 
terahertz FEL by the free space mode using the optical 
cavity [1].  This undulator produces the terahertz radiation 
and its wavelength is 360~170 μm (0.8~1.7 THz) with 17 
MeV electron beam. 

Table 1: THz Undulator Parameters 

Undulator type Halbach planer type 

Size of magnets 110×65×25 mm3 

Material and coating Nd-Fe-B・TiN 

Period length and number 100mm・25 periods 

Undulator length 2.532 m 

Peak magnetic strength 0.41 T (g = 54mm) 

K value 3.82 (max)  
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THEORY OF VIBRATING WIRE 
METHOD 

 The vibrating wire method employs a wire stretched 
through the measured magnetic field. The Lorentz forces 
between AC current driving through the wire and 
surrounding magnetic field cause the string vibration. If 
the frequency of a string vibration matches to eigenmode 
frequency, the resonant standing wave is excited on the 
wire. Measuring the amplitude and phase of the resonance 
modes, we can derive the harmonic mode of the magnetic 
field and reconstruct the undulator field by means of the 
inverse Fourier transformation.  

Figure 2 shows the experimental setup. A wire with the 
tension T and the length L has the fixed ends at z = 0 and 
z = L. The AC current, I(t), in the wire, depends on time 
as I(t) = I0exp(iωt). There are two forces that affect the 
wire. They are gravity μg, where μ is mass of wire per 
unit of length, and the Lorentz force I(t)×Bu(z). 

The equation for vertical wire position, U(z,t), will be 

)()(
2

2

2

2
tIzBug

t

U

z

U
T

t

U +−
∂

∂−
∂

∂=
∂

∂ μγμ         (1) 

Here, the γ is damping constant. A general solution 
may be written in the form 
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The vertical wire position can be described by the 

gravity term Ug and the dynamical term Ud. The 
dynamical term Ud is can be represented by Fourier sine 
series Ub: 
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Where Un is the n-th order Fourier coefficient. The 
magnetic field Bu(z) may be represented in the same way: 
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With these equations, one can find a relation between Ud 
and Bn: 
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where ωn is the resonance frequency of the n-th mode. We 
will reconstruct the magnetic field Bu(z) using Eqs.(5) and 
(6). 

UNDULATOR FIELD MEASUREMENT 
USING VIBRATING WIRE METHOD 

Estimation of wire sag 
In the experiment, we are planning to use the copper-

beryllium wire with 100μm diameter and a length of the 
wire will be 3.5 m as shown in Fig. 2. An expression for 
the gravity term Ug(z) is  
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 The Ug(z) corresponds to a wire sag. In the vibrating 
wire method, the magnetic field at the position in which 
only the amount of the sag shifts will be measured. Note 
that at the position z = L/2, the function Ug(z), that is, the 
wire sag becomes maximum. With the 1 kg weight, the 
maximum wire sag (S) will be 

Figure 2:  Experimental setup of vibration wire method.
(1) Undulator, (2) Copper-beryllium wire (3.5 m, 100μm
diameter), (3) Weight, (4) Laser position sensor 
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Figure 1: Measured magnetic field of the THz undulator
with gap = 54 mm.  
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Figure 3: Measured magnetic field distribution in
transverse plane at the longitudinal centre of the THz
undulator with gap = 54 mm. Since the electron beam
oscillates in the x-z plane in the THz undulator, the Bx
is the main field component of the undulator. 
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From the Eq. (8), the sag is about 100 μm in vertical 
direction (y-direction). Figure 3 shows the spatial 
distribution of magnetic field at the longitudinal centre of 
the undulator obtained with Hall probes measurement. It 
shows that the difference of the magnetic field strength 
between at y = 0 and at y = -100μm is 1.62×10-5 T which 
corresponds to 0.003% of peak field. Therefore the 
measurement error due to the wire sag is negligible in the 
experimental setup.     

Resonance frequency of wire 
Angular frequency ωn and resonant frequency fn of 

wire vibration at the n-th order resonance are given by   
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respectively. 
In the previously described setup, the fundamental 

resonant frequency is 55.4 Hz  

Reconstruction error 
We use the Fourier sine-series to reconstruct the 

magnetic field Bu(z) of the undulator. The resolution of 
reconstruction will depend on how many harmonics are 
included. The reconstructed field distribution is compared 
with the design field distribution of the undulator. The 
design field is expanded into Fourier series, the 
coefficients Bn is the harmonics of a sine Fourier 
transformation as 
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The magnetic field can be reconstructed using the 
inverse Fourier transformation as expressed by Eq. (12).  
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Figure 4 shows the Fourier coefficient Bn up to the 
200th harmonics. It shows the peak harmonics of the 
undulator field at around n = 70. The vibration 
wavelength of 70th harmonics corresponds to a period 
length of the undulator. From Eq. (12), we can get the 
reconstructed field BSm and Fig. 5 shows the 
reconstructed field distributions using up to 75, 100, and 
200 modes, respectively. Comparing these plots in Fig. 5, 
the design field and the reconstructed field incorporating 
higher modes are in good agreement. We define the 
integral error ERRm as difference between Bu(z) and 
BSm(z) integrating over the wire length in Eq. (13).   
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Figure 6 shows the relation between the mode number 
m and ERRm. It is obvious that the error significantly 
decrease when using more than the 71 harmonics. The 
value ERRm/L, in which ERRm is divided by the length of 
the wire, can be considered make an average field error. 
The values for m = 100 and 150 are 1.2×10-4 and   
2.17×10-5 T, respectively. To find a local magnetic field 
error that is larger than geomagnetism (~0.4 Gauss; 
0.01 % of peak field), we should measure more than 
135th harmonics. The 135th resonance frequency of wire 
vibration f135 is 7478 Hz.  

Vibration amplitude of the wire 
Here we consider actual experiments. The Bn is derived 

from measuring the amplitude and phase of wire vibration. 
The position of a wire position sensor is assumed to be z 
= zs. From Eq. (6), the vibration amplitude of n-th 
harmonics Ud,n(zs, t) can be written as 
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Figure 4: Fourier coefficient of the magnetic field, Bn., 
as function of mode number n. 
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Figure 5: (Upper-left) Design magnetic field Bu(z). The 
reconstructed magnetic field BSm(z) using up until 75 
(upper-right), 100 (bottom-left) and 200 (bottom-right) 
harmonics.
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and the driving current I(t) = I0exp(iωt). If the frequency 
of driving current is close to the resonant frequency ωn, 
i.e., ω~ωn, it causes a strong resonant vibration. The 
resonance term Ud,n(zs,t) will dominate over the rest 
harmonics mode. We scan the frequency of driving 
current through one of the resonant frequency ωn. The 
wire vibration is directly measured using the wire position 
sensor and we record the amplitude and the relative phase 
between the sensor output signal and the driving AC 
current. Then we fit this amplitude data as a function of 
frequency using the formula 
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where an, bn, and cn are fitting parameters. The component 
Bn is obtained from an as 
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We numerically estimate the amplitude of wire at z = zs. 
Figure 7 shows the vibration amplitude for the 69th 
harmonics. Here, the parameters are μ = 6.518×10-5 kg/m, 
ωn = 348.043×n Hz, I0 = 10 mA, zs = 0.025 m, γ = 1. At 
the resonant frequency ωn, the amplitude becomes the 
maximum and the width of peak is proportional to the 
damping constant γ. The phase θ depends on the 
frequencies ω, ωn, and the damping constant γ and it flips 
by π at the ωn. In an actual experiment, the damping 
constant will be derived from the fitting using Eq. (16). 
From Fig. 7, the peak amplitude of 69th harmonics is 
about 1.5 mm and this is the maximum for the all 
vibration modes. For comparison, the amplitude of the 
135th mode is 0.5 μm in the same experimental condition. 
From the estimations of the vibration amplitude, the 
modes up to the 135th harmonic are able to be measured 
using the laser at least. Because, we plan to use the laser 
displacement sensor which has position resolution about 
20 nm. 

On the other hand, we calculate the vibration energies 
of the wire for the 69th and 135th harmonics mode. The 

vibration energy can be derived from the wire weight, 
amplitude and frequency of vibration in each mode. In the 
case of the 69th and 135th harmonic mode, the vibration 
energies are about 565 W and 4.63×10-3 W, respectively. 
It is understood that high power AC current source is not 
necessary from this numerical result in the actual 
experiment. 

SUMMARY 
We have numerically examined the magnetic field 

measurement of the THz undulator by using the vibrating 
wire method. The relation between reproducibility of the 
undulator field and the mode harmonics number used for 
the reconstruction of undulator field was derived by 
comparing the design field and the reconstructed field. To 
suppress the measurement error comparable with 
geomagnetism, it is necessary for the reconstruction up to 
the 135th harmonics. The vibration amplitude of wire was 
estimated by assuming an experimental setup. From the 
numerical result, the various vibration modes can be 
measured using a commercial laser displacement sensor. 
Moreover it is understood that the energy consumed in 
vibration of wire is small from the calculation. As a result 
of numerical examination, the vibrating wire method can 
be used for the magnetic field measurement of the THz 
undulator in the t-ACTS project. 
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Figure 6:  The integral error ERRm as difference between
Bu(z) and BSm(z) integrating over the wire length. 

0

0.5

1

1.5

2

-2

-1

0

1

2

3822 3823 3824 3825

A
n(ω

) 
 [

m
m

]

θ [ra
d]

ω/2π [Hz]

n = 69
ω

n
/2π = 3.8234 kHz

Amplitude

Phase

 
Figure 7: Vibration amplitude (An(ω)) and phase (θ) of 
wire as function of the frequency of the driving current 
around the 69th harmonics. 
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