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Abstract
Robb and Bonifacio (2011) claimed that a previously ne-

glected quantum effect results in noticeable changes in the
evolution of the energy distribution associated with spon-
taneous emission in long undulators. They revisited the-
oretical models used to describe the emission of radiation
by relativistic electrons, and claimed that in the asymptotic
limit for a large number of undulator periods the evolution
of the electron energy distribution occurs as discrete en-
ergy groups according to Poisson distribution. These novel
results are based on a one-dimensional model of sponta-
neous emission and assume that electrons are sheets of
charge. However, electrons are point-like particles and the
bandwidth of the angular-integrated spectrum of undulator
radiation is independent of the number of undulator peri-
ods. The evolution of the energy distribution studied with
a three-dimensional theory is consistent with a continuous
diffusive process. We also review how quantum diffusion
of electron energy in an undulator with small undulator pa-
rameter can be analyzed using the Thomson cross-section
expression, unlike the conventional treatment based on the
expression for the Lienard-Wiechert fields.

INTRODUCTION
In a recent article [1] it is stated that quantum effects

in spontaneous emission by a relativistic electron beam in
an undulator can be described by a drift-diffusion equation
only when the parameter

ε =
Nwh̄ω

γmc2
, (1)

is much smaller than unity, whereNw is the number of un-
dulator periods, h̄ is the reduced Planck constant, ω is the
photon frequency, γ the relativistic Lorentz factor, m the
electron rest mass and c the speed of light. In that work
it is argued that when ε ≥ 1, a drift-diffusion equation is
no more sufficient to describe the the evolution of the dis-
tribution of electron momenta, which ”occurs as discrete
momentum groups according to a Poisson distribution”.
In this paper we will show that results in [1] are incor-

rect, because they are based on a one-dimensional model
of the spontaneous radiation emission. This model does
not account for the angular distribution of the radiation, but
only for the emission on axis, which is characterized by an
overall relative bandwidth∼ 1/Nw. In contrast to this, the
electron recoil related with the quantized nature of photons
depends on the entire angular distribution of the radiation,
which is fundamentally linked to the Thomson scattering

phenomenon in the case for a small undulator parameter
K � 1, [2, 3]. When the angular distribution of radiation
is properly accounted for, the overall, angle-integrated rel-
ative bandwidth is independent on the number of undulator
periods. As a result, it turns out that a three-dimensional
drift-diffusion model is valid when the parameter

ζ =
h̄ω

γmc2
, (2)

is much smaller than unity. This means that a Fokker-
Planck approach is always valid in all cases of practical
interest.
In this work we will first review the spectral-angular

characteristics of undulator radiation. For reasons of sim-
plicity, from the very beginning we will consider the limit
for Nw � 1 and K � 1. Our considerations can eas-
ily be applied to arbitrary values of Nw and K , but the
choice of Nw � 1 and K � 1 easily allows one to
underline the fundamental point that the angle-integrated
spectrum of radiation does not depend on the number of
undulator periods Nw. Using a Fokker-Planck equation
we will derive the diffusion coefficient in agreement with
[4]. Finally, the diffusion coefficient will also be derived
by exploiting the relation between undulator radiation and
Thomson scattering, which stresses once more the intrinsic
three-dimensional nature of the radiation pattern.
The aim of this article is not that of changing, or adding

anything to previous theory, but rather to defend the previ-
ous theory against the thesis formulated in[1].

SPONTANEOUS EMISSION PROCESS
AND ASSOCIATED QUANTUM EFFECTS

Spectral-Angular Distribution of Radiation
As is well-known, spontaneous radiation emission from

an ultrarelativistic electron in an undulator can be modeled
fully classically as long as the energy of the emitted pho-
tons h̄ω is much smaller than the electron energy γmc2. In
this case, the knowledge of the classical characteristics of
radiation can easily be used to discuss quantum effects on
the electron motion integrated along the trajectory.
Characteristics of spontaneous radiation have been stud-

ied long time ago in [5, 6]. In this section, we briefly review
them, focusing on the particular case of a planar undulator,
and following notations introduced in previous works of us
[7]. In order to do so, we first call with �̄E(ω) the transverse
component of the electric field generated by an electron in
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the space-frequency domain1. Based on the ultrarelativis-
tic approximation γ2 � 1 and on the consequent parax-
ial approximation, we introduce the slowly varying elec-
tric field envelope �̃E = �̄E exp [−iωz/c], which does not
vary much along the longitudinal coordinate z on the scale
of the reduced wavelength λ = λ/(2π). We can specify
”how near” ω is to the resonant frequency of the undula-
tor, ωr0 = 2kwcγ̄

2
z , by introducing a detuning parameter

C, defined as C = ω/(2γ̄2zc)− kw = (Δω/ωr0)kw, where
ω = ωr0 + Δω. Here kw = 2π/λw, λw is the undulator
period, K is the undulator parameter, which is related to
the undulator magnetic field B by

B =
Kmc2kw

e
, (3)

and γ̄z = γ/
√
1 +K2/2. We further simplify our con-

siderations by considering from the beginning the case for
K2 � 1 and Nw � 1. These two assumptions do not
change the nature of our considerations, and are introduces
for simplicity only. One obtains

�̃
E = −ωKeLw

2c2zγ
exp

[
i
ωθ2z

2c

]{[
1− θ2xω

kwc

]
�ex

+

[
θxθyω

kwc

]
�ey

}
sinc

[
Lw

4

(
C +

ωθ2

2c

)]
,(4)

where θx and θy are horizontal and vertical angles identi-
fying the angular position of an observer and θ 2 = θ2x+θ

2
y .

Here and everywhere in this paper we will be using Gaus-
sian units. The total energy emitted per unit spectral inter-
val per unit solid angle turns out to be

dW

dωdΩ
=

ω2K2L2
we

2

16π2c3γ2

{[
1− θ2xω

kwc

]2
+

[
θxθyω

kwc

]2}
×sinc2

[
Lw

4

(
C +

ωθ2

2c

)]
, (5)

in agreement with [6].

Angle-Integrated Spectral Distribution of Radia-
tion
We now integrate Eq. (5) over all angles by using the

fact that Nw � 1. When this is the case, the bandwidth of
the radiation spectrum does not depend on the number of
undulator periods. This is represented, mathematically, by
the fact that the sinc function in Eq. (5) can be substituted
with a Dirac-δ function according to sinc2[x/a]/(πa) −→
δ(x) for a −→ 0. Integrating over the solid angle we obtain

dW

dω
=
e2ωK2Lw

4c2γ2

[
1 +

(
ω

ckwγ2
− 1

)2
]
, (6)

1By this, �̄E(ω) is defined as the Fourier transform of the electric field
in the time domain, �E(t), according to �̄E(ω) =

∫∞
−∞

�E(t) exp[iωt]dt,
and has a dimension of an electric field multiplied by a time.

for ω < 2cγ2kw, and zero otherwise. Note that here we
already set γ̄z � γ in the limit for K � 1. Eq. (6) is
in agreement with expressions in literature, e.g. [5] (where
the energy spectrum was first calculated) and [8]2.
For us, the important point to be underlined by inspec-

tion of Eq. (6) is the fact that the radiation spectrum de-
pends on the number of undulator periods only through
a scaling factor. In other words, the bandwidth is inde-
pendent of Nw. The reason for this is that we are now
considering the spectrum integrated over angles. At vari-
ance, the on-axis spectral bandwidth exhibits a dependence
on the number of undulator periods, and scales as 1/Nw.
The authors of [1] consider form the very beginning a one-
dimensional model and explicitly state that ”the linewidth
of wiggler radiation is Δω/ω ∼ 1/Nw”. This is correct if
one considers the on-axis spectrum only, for example ana-
lyzing the undulator output through a pinhole. In our case
of interest, however, we want to discuss the effect of the
electron recoil due to the quantized nature of radiation, and
the electron does not distinguish radiation emitted on axis
from radiation emitted at an angle. The one-dimensional
model in [1] cannot be applied, and the linewidth of the
radiation is independent of Nw.

Drift-Diffusion Model
The previous derivations and observations should con-

vince the reader that the parameter ε defined in Eq. (1) is
unphysical, and that a Fokker-Planck equation can prop-
erly describe the evolution of the electron density, as long
as ζ = h̄ω/(γmc2) � 1. The coefficient of quantum dif-
fusion in a bending magnet was calculated for the first time
in [9]. This expression is valid for calculations of energy
diffusion in the undulator at large values of the undulator
parameter. At arbitrary values ofK the quantum diffusion
coefficient was calculated in [4].
Let us write the evolution equation for a particular pro-

jection of the electron phase space as a function the energy-
time variables. Calling with f = f(E , t) this projection of
the electron density phase space, and with ψ(E ,ΔE)dΔE
the probability to find an electron with energy between E
and E +ΔE in the time intervalΔt, we write the evolution
equation as

∂f

∂t
= −∂(C1f)

∂E +
1

2

∂2(C2f)

∂E2
(7)

where

C1 =
1

Δt

∫
dΔE ψ(E ,ΔE)ΔE (8)

and

C2 =
1

Δt

∫
dΔE ψ(E ,ΔE)ΔE2 (9)

2A typing error is present in Eq. (2.11) of [8].
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Eq. (8) is just the rate of mean energy lost of an electron,
Eq. (9) gives the diffusion coefficient we are after. We im-
pose energy conservation by setting ΔE = h̄ω. By noting
that

1

h̄ω

dW

d(h̄ω)
= ψ(E ,ΔE) (10)

and using Eq. (6) we obtain

C2

m2c4
=
d〈(Δγ)2)

dt
=

c

Lw

1

m2c4

∫ ∞

0

dω h̄ω
dW

dω

=
7

15
recλcK

2k3wγ
4 . (11)

Not surprisingly, Eq. (11) is in agreement with the result
obtained in [4] in the limit for K � 1. Note that de-
spite the use of a one-dimensional model, authors of [1]
find parametric agreement with Eq. (11) in the case for
ε � 1. The reason for this is that for ε � 1 they use
a drift-diffusion equation. They cannot recover the exact
numerical result, since they miss the contribution to the
diffusion coefficient coming from radiation emitted at an-
gles different from zero, due to the incorrect choice of a
one-dimensional model, but the right parameters are never-
theless present in this asymptote. However, the use of the
one-dimensional model leads to the introduction of the un-
physical parameter ε, and to the consequent introduction of
an artificial quantum effect that does not exist in reality for
ε ≥ 1.

Relation w   ith Thomson Scattering
It is straightforward to underline the well-known equiva-

lence between the previously obtained results and Thomson
scattering of radiation. In fact, in the limit forK 2 � 1 and
Nw � 1 and in the reference system of the electron, the
undulator magnetic field is seen as a plane wave interact-
ing with the electron with frequency

ωR = γckw . (12)

This simple observation includes the essence of the
Weizsäcker-Williams method of virtual quanta [10], and
allows to calculate the quantum diffusion coefficient, Eq.
(11), following an alternative derivation in the rest frame.
Due to the presence of the electron, the plane wave scat-

ters radiation as a function of the rest frame angle. Under
the approximation h̄ωR � mec

2 the process differential
cross-section for horizontally polarized incident radiation
is just the Thomson cross-section for polarized radiation:

dσ

dΩR
= r2e

[
cos2(θR) cos

2(φR) + sin2(φR)
]
, (13)

where θR and φR are spherical coordinate angles in the rest
frame3 of the electron and re = e2/(mc2) is the classical
electron radius.

3We will label the rest frame wit R, and the lab frame with L.

In the language of photons we can say that Eq. (13) is
related to the probability of scattering a photon in the solid
angle dΩR = sin θRdθRdφR. In fact, remembering that
the radiation pulse in the rest frame has a duration given by
Lw/(γc), the number of photons scattered in dΩR can be
written as

dNphR

dΩR
=

dσ

dΩR

Lw

γc

1

h̄ωR
S̄R , (14)

where S̄R is the time-averaged Poynting vector of the ra-
diation incident on the electron in the rest frame. Note
that only elastic scattering takes place under the over-
mentioned assumption h̄ωR � mec

2. Therefore, there is
no change of photon frequency in the scattering process.
Since the wave packet incident on the electron includes
Nw � 1 period we can assume, with accuracy 1/Nw � 1,
that the incoming wave packet is composed of a single fre-
quency. This explain why Eq. (14) is not analyzed in fre-
quency.
The magnitude of the time-averaged Poynting vector of

the radiation incident on the electron in the rest frame can
be found remembering that4

ER � γBL

BR = γBL (15)

where BL is the undulator field in the laboratory frame.
With the help of Eq. (3), the time-averaged Poynting vector
of the radiation incident on the electron in the rest frame
can be written as

S̄R =
c

8π

(
γKmc2kw

e

)2

. (16)

The relation between frequencies in the laboratory frame
and in the rest frame obey the following Lorentz transfor-
mation

ωL(θR) = γωR(1 + cos θR) . (17)

By energy conservation we can identify the change in the
electron energy in the laboratory frame with the photon en-
ergy in the laboratory frame. Eq. (17) allows us to calculate
this quantity by averaging over the number of photons scat-
tered at angles θR in the rest frame, Eq. (14). We can write
the rate of change in the spread ofΔγ as

d〈(Δγ)2)
dt

=
c

Lw

∫
dΩR

(
h̄ωL(θR)

mc2

)2
dNphR

dΩR
. (18)

With the help of Eqs. (12)-(14), Eq. (16) and Eq. (17) we
find

4Note thatEL = γ�β× �BR, which presents a correction of order 1/γ2
with respect to Eq. (15). In our case, this correction can be omitted and
ER � γBL.
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d〈(Δγ)2)
dt

=
7

15
recλcK

2k3wγ
4 , (19)

in perfect agreement with Eq. (11).

CONCLUSIONS
In this paper we showed that quantum effects in sponta-

neous radiation emission can be satisfactorily modeled via
a drift-diffusion model. It is of fundamental importance
to treat spontaneous radiation within a three-dimensional
model. This is explained by the fact that an electron feel-
ing photon recoil does not filter photons along a privileged
direction, but reacts to photons emitted at all angles. In
this case, contrarily to what has been argued in [1], the
linewidth of spontaneous radiation must be integrated over
all angles, and is independent of the number of undula-
tor periods Nw. It follows from our analysis that if one
enforces a three-dimensional model for the spontaneous
emission, a drift-diffusion model remains valid up to pho-
ton energies smaller than the electron energy, which prac-
tically means always. This conclusion is also in contrast
with [1], where the assumption of a linewidth scaling with
1/Nw leads to the identification of an unphysical parameter
scaling as Nw, and to the rise of artificial quantum effects
when this parameters becomes comparable with unity. The
aim of this article is not that of changing, or adding any-
thing to previous theory, but rather to defend the previous
theory against the thesis formulated in [1].
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