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Abstract
We studied in detail the FEL dispersion relation for a 

spatially uniform electron beam, taking into account 
energy spread and the effects of space charge. We derived 
the maximum number of growing modes and the upper 
frequency cut-off for energy distributions satisfying a few 
constraints. Since the FEL dispersion relation for an 
infinite electron beam can be reduced to the 1D FEL 
dispersion relations when the radiation propagates along 
the undulation’s axis, our analyses and findings directly 
are applicable to 1D FELs. 

INTRODUCTION 
We previously introduced a method of determining the 

number of growing modes and calculating their high 
frequency cut-off  for the 1D FEL dispersion relation in 
the absence of the space- charge effects [1]. By allowing 
the radiation fields to propagate at an angle with respect 
to the undulator’s axis, while assuming that the electrons 
move along constrained helical trajectories parallel with 
the undulator’s axis, we were able to derive a dispersion 
relationship for a spatially uniform electron beam [2]; 
furthermore, it  is reducible  to the 1D FEL dispersion 
relation provided that the radiation propagates along the 
undulator’s axis.  

In this work, we started with the FEL dispersion 
relation we derived earlier  [2] for a spatially uniform 
electron-beam, and investigated the number of growing 
modes and their high frequency cut-off , taking into 
account the space-charge effects.  In section II, for an 
unspecified energy distribution satisfying certain 
constraints, we derive the formula for determining the 
maximal number of growing modes and their high 
frequency cut-off. Section III contains some  examples 
where we apply the formula to several frequently 
encountered energy distributions and compare our results 
with direct numerical solutions of the dispersion relations. 
We summarize our findings in Section IV. 

MAXIMAL NUMBER OF GROWING 
MODES 

Assuming that electrons have a uniform spatial 
distribution and move along helical trajectories in parallel 
with the undulator’s axis, the FEL dispersion relation is  
[2]                                                         
                                � � � �sDiss p

2ˆ1 ��� ,                   (1) 

where s is the Laplace transformation-variable of the 
normalized longitudinal location zz ��ˆ ,                                                  
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is the 1D FEL gain parameter, ecmI eA
3�  is the 

Alfven current, �  is the radiation frequency, zv is the 
longitudinal velocity of electrons, z� is the Lorentz 

parameter for zv , and 2
3

ˆˆˆ
����� kd  is the normalized 

detuning parameter  defined for the radiation field 
propagating with a transverse angle,                                                         
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is the normalized detuning parameter,  wwk ��2� is the 
undulator’s wave number, ��� cz �� 2 is the Pierce 
parameter, and the normalized transverse wave-vector is 
defined as                                                       
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The dispersion integral in eq. (1) is defined as                                           
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PFdPdsD

3
ˆˆ

1
ˆ
ˆˆˆ ,          (2)                       

for any root of eq. (1) with � � 0Re �s to correspond to an 
exponential growing FEL instability. To explore the roots 
of eq. (1) with � � 0Re �s , we define a complex function                          

                            � � � � � �sDsDisssw p ���� 2ˆ                 (3) 
and consider a mapping from the complex s  plane to the 
complex � �sw  plane along the contour C , which 
comprises a vertical straight line parallel to the imaginary 
axis, C1, and a semi-circle in the right half complex plane, 
C2 , as illustrated in fig. 1 (a). Fig. 1 (b) shows the map of 
C in the complex � �sw plane, D, with D1and D2 being, 
respectively, the map of C1 and C2 . For an energy 
distribution � �PF ˆˆ  falling faster than Lorentzian 
distribution, we previously proved that the map from C2   to 
D2 has the asymptotic property 
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where maxF̂  is the maximum  of � �PF ˆˆ  and q̂  is a positive 
number that satisfies,  

                                 � �
22

max

ˆ/ˆ1

ˆˆˆ
qP

FPF
�

�  , P̂� .            (5)  

Applying eq. (4) to eq. (3) leads to* 

� � � � � � � � 0limˆlimˆ1lim 22 ������
������

sDssDsDis
spsps

, (6)                 

suggesting  that the map from C2 to D2 asymptotically 
approaches an identity map as the radius of C2   moves 
towards  infinity. Assuming C1 is  infinitely close to the 
imaginary axis leads to 
                                   its �� �� ,                                 (7) 

where  �� is an infinitesimal positive number, and t is a 
real number going from �  to ��  along C1. Inserting eq. 
(7) into eq. (2) and taking the limit 0���  yields                                        
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Hence, the map from C1 to D1 as calculated from eq. (3) 
reads    
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* In the case where  � �sRe  is approaching zero, we always can ensure 

that  the imaginary of s grows faster than � � 1Re �s  such that

� � � � 2ReIm ��� sss , and hence eq. (6) is satisfied. 

As  t  monotonically decreases from �  to �� , D1 
intersects with the imaginary axis at  
                                         2

0
ˆ ���� ptt  ,                     (10) 

with the intersecting point at the imaginary axis of the 
� �sw  plane given by 

                                        � � 2ˆ ��� piitw   ,                     (11) 
and  
                  ntt �      for  leNn ,...2,1� ,                    (12) 

where leN  is the total number of local extremas of � �PF ˆˆ

and nt  as determined by the condition† 

                                 

� � 0ˆ
ˆˆ
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�
��� nd tPPd

PFd
    .              (13) 

If � �sD is meromorphic in the � � 0Re �s half plane and 
has no poles or zeros along C, from the principle of this 
argument, the number of solutions of the dispersion 
relation, eq. (1), is given by  
                                     PWZ �� ,                           (14) 
wherein P is the number of poles of function � �sw  
enclosed by the contour, C, in the complex s  plane 
(fig.2b), and W is the winding number of D around the 
origin of the complex � �sw plane. In addition, the 
derivative of � �sD  for � � 0Re �s satisfies the following                          
                                                           
† In cases where � �PF ˆˆ   is smooth and any order of its derivative is 

continuous, nt  always are discrete numbers. If � �PF ˆˆ  is not smooth,  

there might be  some continuous range of t  wherein eq. (13) is satisfied. 
In that case, each continuous range is counted as one intersection in eq. 
(12) .   

 
                                 (a)                                                                 (b) 
Figure 1: Mapping from s to w(s) as defined in eq. (3). We assumed that the energy distribution satisfies eq. (5); hence, 
the map from C2 to D2 approaches an identity map as |s| nears  infinity as shown in eq. (6). 
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and hence, as long as � ��
�

��

PdPF
Pd
d ˆˆˆ
ˆ

 is bounded, � �sD  

always is analytic in the right half plane, thus  leading  to‡ 
                                       WZ �                                   (16)    
i.e., the number of growing modes corresponds to the 
winding number. Eqs. (10) and (12) suggest that as t  
monotonically decreases from �  to �� , D intersects 
with the imaginary axis for ��� + 1 times. For a realistic 
distribution- function with the constraints 
                                  � � 0ˆˆlim

ˆ
�

"��
PF

P
 ,                                              

���   always is odd and equal to 2� − 1, where �  is 
number of maxima of the energy distribution function. 
For each increases of winding number, the contour has to 
intersect with the imaginary axis twice and consequently, 
the maximal number of growing modes is equal to§                                                                         

                           MNZ le �
�

�
2

1
max ,                         (17)     

i.e. the number of maxima of the energy distribution 
function. As  eq. (9) implies, for given energy distribution 
and space-charge parameter, contour D1 solely depends on 
the detuning parameter

d3�̂ . As we  see later, by 
investigating where  D1 intersects the imaginary axis, we 
can determine the frequency regions for FEL instability. 

  EXAMPLES FOR ENERGY 
DISTRIBUTION HAVING ONE 

EXTREMUM         
   Assuming � �PF ˆˆ  has only a local maximum at 0ˆ �P and 
satisfies the constraints described in previous sections, eq. 
(17) suggests that, at most, there is  one growing mode. 
As shown in fig. 2, D1 intersects twice with the imaginary 
axis . One of the intersections happens at  
                                       2ˆ ��� pt   
and, according to eq. (13), the other intersection occurs at 
                                      dt 31 �̂�                                  (18)    
with the intersecting point in the � �sw plane given by                                    
                                                           
‡  As the contour C remains in the right half plane where � �sw  is 
analytic, there is no pole along C . However, possibly  there are zeros 
along C1  that correspond to a purely imaginary root and hence, do not 
entail  an increase of the growing root. 
§We note that ��� cannot be zero as required by our assumption in eq. 
(5). 
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Since at ���t ,  
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and, at ��t                 
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depending on the value of eq. (19), D1 behaves as one of 
the three scenarios shown in fig. 2. If D1 crosses the origin 
of the � �sw  plane as shown in fig . 2(b), eq. (19) 
vanishes, leaving the cut-off detuning parameter as**
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Table 1 lists the  expressions for the cut-off detuning 
parameters as we calculated from eq. (22) for some 
frequently used energy distributions. The general 
dependence of high frequency cut-off on the energy 
spread and space-charge parameter has the form

� � 122
3

ˆˆ �� ��#�� pd a $ , with the coefficient a  determined 
by the specific form of the energy distribution. Inserting 
Gaussian distribution as shown in Table 1 into eq. (9) 
yields 
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Fig.2 shows how contour D1 changes with detuning, 
implying that the winding number, and hence, the number 
of growing modes change from 1 to 0 as the detuning 
rises  above 0.8. Fig. 3 shows the numerical solution of 
the dispersion relation, eq. (1), with the dispersion 
integral given by [3] 
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                                                                                      (24) 
in  agreement  with the conclusion in eq. (17) and Table 1 
on the number of growing modes and the cut-off 
frequency.                       
                                                           
** In the case where  � �PF ˆˆ  solely depends on 2P̂ , typically there are 
no singularities in the integrand, and hence,  the principal value of the 
integration need not be taken.   
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                   (a)                                                    (b)                                              (c) 
Figure 2 and hence, 
the map from C2 to D2 approaches an identity map as |s| approaches infinity as shown in the eq.(6). 
 

Table 1: Cut-off Frequency of FEL  
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  SUMMARY 
   In this work, we show that provided that  the energy 
distribution of the electron beam, � �PF ˆˆ , satisfies the 
following conditions: 

3 � �PF ˆˆ  is differentiable for real P̂ ; 

3 there exists a positive number M , such that 

               � � MPdPF
Pd
d

��
�

��

ˆˆˆ
ˆ

;
 

3 hence, there exists two positive numbers, maxF̂
and q̂ , such that                                                     

            � �
22

max

ˆ/ˆ1

ˆˆˆ
qP

FPF
�

�  , P̂� , 

the maximal number of growing modes for a FEL with 
spatially uniform electron beam does not exceed the 
number of maxima of the energy distribution function. 
In addition, if � �PF ˆˆ  has only one local maximum at 

0ˆ �P , then the high frequency cut-off is determined by 

 

 
Figure 3: Numerical solution of the FEL growth rate for 
a Gaussian energy-distribution with various energy-
spreads and 5.0ˆ �� p

.  
 
eq. (22). These results directly are applicable to the 1D 
FEL model by setting the transverse wave vector, �k

�
, to 

zero. As our analyses are based on a dispersion relation 
derived for a spatially uniform electron beam, it 
certainly is not applicable when effects due to 
background electron density variation become important 
and the dispersion relation explored here does not hold 
anymore. 
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