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Abstract

Harmonic seeding of free electron lasers has attracted
significant attention as a method for producing transform-
limited pulses in the soft X-ray region. Harmonic multipli-
cation schemes extend seeding to shorter wavelengths, but
also amplify the phase errors of the initial seed laser, and
may degrade the pulse quality and impede production of
transform-limited pulses. In this paper we consider the ef-
fect of seed laser phase errors in high gain harmonic gener-
ation and echo-enabled harmonic generation. We use sim-
ulations to confirm analytical results for the case of linearly
chirped seed lasers, and extend the results for arbitrary seed
laser envelope and phase.

INTRODUCTION
The recent success of Self-Amplified Spontaneous Emis-

sion (SASE) Free Electron Lasers (FELs) has led to x-ray
sources of unprecedented brightness [1, 2]. However, some
applications still require higher power (e.g. [3, 4]), and the
poor longitudinal coherence of SASE FELs can inhibit x-
ray optimization and degrade experimental results. To im-
prove control over the spectral and temporal x-ray proper-
ties, there is strong interest in seeding FELs at high har-
monics of optical or UV lasers. Beamline users are par-
ticularly interested in the minimal bandwidth and simple
temporal structure of transform-limited x-ray pulses.

One potentially serious issue for the seeding process is
how properties of the seed laser can affect the production
of transform-limited x-ray pulses. In Ref. [5] we presented
a detailed study of how laser phase errors affect the final
pulse characteristics. Here we present a summary of those
results.

There are numerous challenges for seeding schemes, and
previous theoretical and experimental studies have focused
on a wide variety of accelerator and FEL requirements. In
particular, it is well known that harmonic seeding schemes
must contend with increasingly strict electron beam toler-
ances as the harmonic number increases. Initial errors that
are insignificant compared to the seed wavelength may be
large relative to a much shorter wavelength harmonic. For
example, harmonic multiplication amplifies electron shot
noise, which can overwhelm the external seeding source
[6, 7, 8, 9]. More recently attention has turned to errors
from the seed laser itself [5, 10, 11, 12, 13]. Without suffi-
cient control of the initial seed laser phase, the x-ray pulse
acquires longitudinal structure; if sufficiently far from the
transform-limit, seeding may have little or no benefit com-
pared to SASE FELs.

This paper focuses on the effects of laser phase errors on
the seeded electron density, using both analytical methods
[12] and simulations [5]. We also consider several potential

techniques for measuring and controlling laser phase in the
UV spectrum.

SCHEMATIC DESCRIPTION OF
HARMONIC PHASE MULTIPLICATION

As a simple example of seeding, we consider a High
Gain Harmonic Generation (HGHG) scheme driven by a
temporally flat-top laser pulse of wavelength, λL. The
seeding scheme bunches the electrons both at the funda-
mental wavevector, k1 = 2π/λL, as well as at higher har-
monics kH = Hk1, for harmonic number H .

In a non-ideal laser pulse, the wavelength varies as a
function of time; i.e. the pulse has non-flat phase. As the
wavelength changes, the resulting separation of electron
density spikes also shifts from the central wavelength, as
illustrated in Fig. 1. Because the relative shift in frequency
is the same at all harmonics, an increase in the fundamen-
tal frequency of ∆k1 will grow the harmonic bandwidth by
∆kH ≈ H∆k1.

Figure 1: Cartoon illustrating the effect of seed phase errors
on HGHG electron bunching. A time-varying wavelength
in the seed laser (blue line) results in a varying separation
of the bunched electrons (red bunches).

To quantify the effect of wavelength variation in the
seed laser, we calculate the FEL’s Time-Bandwidth Prod-
uct (TBP), TBP = c∆TFEL∆kFEL, from the pulse dura-
tion, ∆TFEL, bandwidth, ∆kFEL and speed of light, c. For
a given spectral distribution, the minimal TBP corresponds
to a transform-limited pulse. As the TBP grows, the seeded
FEL characteristics revert to those of a SASE pulse. For a
flat-top seed laser with a small linear variation in wave-
length, all harmonics have the same pulse length, so we the
TBP grows linearly with harmonic number.

HGHG WITH SPECTRAL PHASE
ERRORS

Laser Phase Definition
Experimental laser measurements are predominantly

spectral, so it is convenient to describe the laser pulse using

Proceedings of FEL2012, Nara, Japan MOOCI01

FEL Theory

ISBN 978-3-95450-123-6

17 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s



the electric field in the spectral domain

Ẽ(k) = Ẽ(k)e−iφ(k) , (1)

with spectral intensity, Ẽ(k) and phase

φ(k) =

∞∑
n=2

φn
n!

(k − k0)n . (2)

(We ignore the φ0 and φ1 terms, which represent the
carrier-envelope offset and the envelope temporal delay
respectively, and are not relevant to this analysis.) A
transform-limited pulse by definition has minimal TBP and
flat spectral phase, φ(k) = 0. Non-ideal laser pulses will
have non-negligible spectral phase, and these phase terms
produce longer pulses with greater intensity fluctuation in
the time domain; i.e. pulses farther from the transform
limit.

Analytical approaches generally assume quadratic
phase, and a laser pulse that is either much shorter [5, 12]
or much longer [13] than the electron pulse. Due to the
challenge of producing sufficient laser power at short wave-
lengths, in this paper we focus on the case of a short laser
pulse.

Electron Phase Definition
To estimate the FEL radiation at wave vector k, we de-

fine the averaged electron bunching factor

b(k) ≡ 1

NT

NT∑
j=1

e−ikz̄j , (3)

where the sum is over the final longitudinal position, z̄, of
all NT electrons in the bunch. We can also define a local
bunching factor by summing over a single wavelength slice
of the beam. In this case, we change the normalization of
Eq. 3 to the number of electrons in the local slice,Nslice(z),
giving

bslice,k(z) ≡ 1

Nslice(z)

Nslice(z)∑
j=1

eikz̄j . (4)

In HGHG and EEHG, the seeded bunching factor largely
determines the FEL characteristics at saturation. For exam-
ple, the length of the slice bunching, bslice,k(z), determines
the duration of the FEL pulse, ∆TFEL. The width of a har-
monic in the averaged bunching, b(k), determines the FEL
bandwidth, ∆kFEL. From the product of the RMS FEL du-
ration, ∆TFEL, and bandwidth, ∆kFEL, we find the TBP
of the FEL.

We can also define a spectral phase of the electron bunch
from the argument of the averaged bunching factor,

φe−(k) = Arg
[
b(k)

]
. (5)

The electron spectral phase is directly analogous to the
laser spectral phase (Eq. 2).

Second Order Spectral Phase, Analytical Ap-
proach

For a pulse with Gaussian spectral amplitude of RMS
width, σk, and second order spectral phase, φ2, the bunch-
ing factor can be found analytically. In the time domain
this pulse has a Gaussian duration, σL, and second order
temporal phase, α2, determined by the spectral equivalents,
σk and φ2. Assuming a longitudinally uniform distribution
with an energy spread of σp, the averaged bunching factor
is [12]

bH(δk) ∝ σLe−H
2r2(1+0.81H−2/3)2/2A2

0

×G(HGHG)
H (δkσL/H,Hβσ

2
L/λ

2, r) , (6)

with

G
(HGHG)
H (x, y, r) ≡

∫ ∞
−∞

dξeixξ+iyξ
2

×JH
[
r(H+0.81H−1/3)e−ξ

2/2

]
, (7)

where β ≡ α2/2k
2
L is the dimensionless second order

phase and r ∼ 1 optimizes the bunching factor near the
peak of the laser pulse. From bH(δk) we can determine
both the bandwidth, ∆kFEL and the spectral phase, φe−(k),
as a function of harmonic number. Ref. [12] gives the full
derivation of Eqs. 6 and 7.

Second Order Spectral Phase, Simulation
Numerical approaches can extend solutions to higher or-

der spectral phase. Figures 2 and 3 show comparisons be-
tween analytical and numerical results. Figure 4 shows the
spectral phase, φe−(k), for the first ten harmonics, calcu-
lated from both simulations and Eq. 6. When the seed
pulse has quadratic phase, the electron bunching factor also
shows quadratic phase. As expected, the phase increases as
a function of harmonic number.

Pulse Shortening
The increase in TBP for Gaussian pulses is not as large

as predicted for a flat-top pulse. The flat-top and Gaus-
sian cases differ primarily due to the effect of harmonic
pulse shortening, evident in Fig. 5. In a flat-top pulse, the
FEL pulse length is independent of harmonic number. By
contrast, Fig. 6 confirms that in HGHG from a Gaussian
seed laser, the pulse length is approximately proportional
to H−1/3 [12]. Pulse shortening changes the harmonic
spectral phase; while the fundamental bunching follows
the seed laser amplitude and phase, the harmonic bunch-
ing samples phase only from the center of the seed pulse.

Arbitrary Spectral Phase, Simulation
Simulations allow study of realistic laser pulses that con-

tain non-negligible spectral phase beyond the 2nd order.
Figure 7 shows the 10th harmonic electron spectral phase,
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Figure 2: Electron bunching factor for a Gaussian seed
laser pulse with quadratic phase. The seed laser pulse has
phase φ(σk) = π, amplitude A0 = 30σp, and RMS band-
width σk/kL = 10%. Amplitude of the bunching factor is
small due to averaging over a long electron bunch of uni-
form length, L = 10σL (Eq. 3). Simulated bandwidths
(blue) reproduce the analytical result (Eq. 7 in green, scaled
to match the bunching amplitude). As expected, the peaks
broaden at higher harmonics.
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Figure 3: RMS TBP, c∆TFEL∆kFEL, for the electron
bunching factor of Fig. 2. The TBP increases at higher har-
monics (blue squares), but slower than would be expected
from a flat-top pulse. For comparison, a transform-limited
pulse with flat phase has minimal TBP at all harmonics
(green stars).

φe−(k), from seed lasers with 2nd through 5th order spec-
tral phase. Note that odd order phases have less impact on
the electron bunch than the even orders due to pulse short-
ening. Figure 8 illustrates the effect of pulse shortening for
third order phase.

The loose constraints on odd order phase may aid in pro-
duction of transform-limited pulses. For example, cancel-
ing only the even order seed laser phase will reduce the
complexity of the optical setup. Alternatively, it may be
beneficial to treat the laser phase as a total minimization
problem; rather than separately minimizing each order, it
is possible to collectively select all orders to minimize the
TBP of the FEL. This collective approach is analogous to
methods used in the production of transform-limited laser
pulses [14, 15].

EEHG WITH SPECTRAL PHASE ERRORS

In EEHG, spectral phase on the seed laser affects the two
modulation stages differently [16]. On the first laser pulse,
spectral phase distorts the separation of the filaments, so
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Figure 4: Spectral phase of the electron bunching factor
from Fig. 2 for the first ten harmonics. Solid line calcu-
lated from Eq. 7, with crosses taken from simulations. At
higher harmonics the curves are wider due to the increasing
bandwidth.
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Figure 5: Slice electron bunching factor and laser E-field as
a function of longitudinal position. Each bunching factor
point corresponds to a slice of the electron bunch of width
λL (Eq. 4).

that the density spikes do not fall exactly at the harmonic
spacing (Fig. 9). The distortion reduces the bunching fac-
tor, but because the second laser still phase locks each set
of density spikes, there is relatively little effect on the TBP.

The second stage of EEHG is similar to the HGHG pro-
cess. Assuming a flat-top laser pulse in the first stage and
a Gaussian pulse of length σL2 in the second stage, the in-
crease in electron bunching factor bandwidth is given by
G

(EEHG)
H [δkσL2/H, (H + 1)βσ2

L2/λ
2] [12], with

G
(EEHG)
H (x, y) ≡

∫ ∞
−∞

dξeixξ+iyξ
2

×JH+1

(
r
[
(H+1)+0.81(H+1)−1/3

]
e−ξ

2/2

)
, (8)

analogous to Eq. 7 for the case of HGHG. Figure 10 con-
firms the different effects of phase errors in the first and
second laser stages.

PRACTICAL EXAMPLE
We conclude by simulating a practical example using an

800 nm laser pulse. Table 1 gives experimentally measured
spectral parameters from an ultrafast Ti:Sapphire amplifier
(the Coherent Legend Elite USX). The pulse length of 22
fs is close to the transform-limited (flat phase) pulse length
of 20 fs. Despite the nearly transform-limited initial seed
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Figure 6: Pulse length as a function of harmonic num-
ber. Simulation pulse lengths determined from the electron
bunching factor (stars) follow the expected H−1/3 scaling
(line).
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Figure 7: Electron spectral phase, φe− , at the 10th har-
monic for seed laser pulses with 2nd through 5th order
spectral phase. For each curve the spectral phase of the
laser seed has φ(σk) = φnσ

n
k /n! = 1 (Eq. 2). The band-

width, ∆kFEL, determines the plotted range; the odd order
cases produce narrower bandwidths.

laser pulse, Fig. 11 shows that the electron bunching fac-
tor at the 30th harmonic is approximately three times the
transform limit. From Fig. 12 we see that if the phase er-
rors increase beyond the level of Table 1 by just a factor of
two, the formerly transform-limited pulse starts to acquire
temporal modulations.

Table 1: Measured parameters for a nearly transform-
limited 800 nm pulse. The fourth order phase dominates
the FEL performance.

Measured Laser Pulse
Central Wavelength 800 nm

Bandwidth (FWHM) 73 nm
Pulse Duration 22 fs

Second Order Phase (GDD) 0.5 fs2

Third Order Phase (TOD) 2.4× 103 fs3

Fourth Order Phase (FOD) −4.6× 104 fs4

Fifth Order Phase (5OD) −1.2× 106 fs5
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Figure 8: Slice bunching factor (Eq. 4) as a function of po-
sition for the fundamental and 10th harmonic. Third order
spectral phase on the seed laser produces side pulses on the
time-domain E-field (solid red line). The temporal phase
(solid green line) is flat within each pulse, but jumps by π
between pulses. The 10th harmonic bunching factor (dash
blue line) exists only in the center of the largest pulse, and
consequently does not pick up the third order phase.

Figure 9: Schematic of EEHG phase space. Phase errors on
the first stage distort the separation of density spikes within
a single modulation wavelength (solid blue arrows), but the
length of each group (dotted red arrows) is phase locked
by the second stage. Phase errors on the second stage, by
contrast, can change the final seeded wavelength.

MEASURING AND CONTROLLING UV
LASER PHASE

At present there are numerous techniques for character-
izing ultrafast laser pulses (see e.g. [17, 18]). Some of
the most popular techniques are variations of Frequency
Regime Optical Gating (FROG) [19] and Spectral Phase-
Interferometry for Direct E-field Reconstruction (SPIDER)
[20].

Both FROG and SPIDER were originally developed for
the optical regime; the two methods rely on readily avail-
able nonlinear materials in the optical range to either gate
(FROG) or interfere pulses (SPIDER) to reveal the spec-
tral phase. However, in the last decade several groups have
made progress in porting the techniques to shorter wave-
lengths. For example, the nonlinearity of the photoelectric
effect can be used both FROG [21] and SPIDER [22]. It
is also possible to apply the nonlinearity to the long wave-
length drive pulse prior to generating the UV seed wave-
length [23]. Both approaches have been used to demon-
strate the feasibility of High Harmonic Generation (HHG)
sources with flat spectral phase at wavelengths below 75
nm [21, 23].
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Figure 10: Averaged bunching factor for 10th harmonic
EEHG with Gaussian envelope for both laser stages.
Quadratic phase on the first seed laser (φ2σ

2
k /2 = 1) re-

duces the bunching factor, but does not broaden the band-
width. The same quadratic phase on the second seed laser
increases the bandwidth and TBP as found for HGHG.
Solid lines show the numerical integral, Eq. 8.
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Figure 11: RMS TBP vs harmonic number for the pulse pa-
rameters given in Table 1. Even for this nearly transform-
limited seed pulse, the TBP at the 30th harmonic (blue
squares) is almost three times the transform-limited flat-
phase case (green stars). Note that in [5] the stars were in-
correctly labeled as ’quadratic’ phase instead of ’measured’
phase.

While recent results are promising, there is still a need
for significant research and development of phase control
techniques at the short wavelengths relevant to seeded x-
ray FELs.

CONCLUSION

We have described the effect of seed laser phase on
HGHG and EEHG schemes. The electron bunching factor
copies the seed laser spectral phase and the electron spec-
tral phase increases with harmonic number, but pulse nar-
rowing from the laser envelope decreases the phase growth,
especially for odd order spectral phase. A realistic laser
pulse in the optical regime will produce a seeded elec-
tron beam at the 30th harmonic with approximately three
times the transform limit. We conclude that seeding near
transform-limited pulses in the soft x-ray regime will re-
quire development of new methods for phase measurement
and control of short wavelength lasers or HHG sources.
The required level of phase control is on par with that cur-
rently available at 800 nm.
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Figure 12: Slice electron bunching vs. time for parameters
of Table 1. Bunching is shown for the 30th harmonic of
laser pulses simulated with flat phase (blue squares), mea-
sured phase (green circles) and twice the measured phase
(red triangles).
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