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Abstract
Self-seeding is a promising approach to signi�cantly

narrow the SASE bandwidth of XFELs to produce nearly
transform-limited pulses. The development of such
schemes in the soft X-ray wavelength range necessarily in-
volves gratings as dispersive elements. These introduce, in
general, a pulse-front tilt, which is directly proportional to
the angular dispersion. Pulse-front tilt may easily lead to a
seed signal decrease by a factor two or more. Suggestions
on how to minimize the pulse-front tilt effect in the self-
seeding setup are given. More details and references can
be found in [1].

INTRODUCTION
The longitudinal coherence of X-ray SASE FELs is

rather poor. Self-seeding schemes have been studied to re-
duce the bandwidth of SASE X-ray FELs. A self-seeding
setup consists of two undulators separated by a photon
monochromator and an electron bypass, normally a four-
dipole chicane. Recently, a very compact soft X-ray self-
seeding scheme was designed at SLAC, based on a grating
monochromator. We studied the performance of this com-
pact scheme for the European XFEL upgrade elsewhere
(see [1] for references). Limitations on the performance of
the self-seeding scheme related with aberrations and spatial
quality of the seed beam have been extensively discussed in
literature and go beyond the scope of this paper. Here we
will focus our attention on the spatiotemporal distortions
of the X-ray seed pulse. Numerical results provided by
ray-tracing algorithms applied to grating design programs
give accurate information on the spatial properties of the
imaging optical system of grating monochromator. How-
ever, in the case of self-seeding, the spatiotemporal defor-
mation of the seeded X-ray optical pulses is not negligi-
ble: aside from the conventional aberrations, distortions as
pulse-front tilt should also be considered (see [1] for ref-
erences). The propagation and distortion of X-ray pulses
in grating monochromators can be described using a wave
optical theory. Most of our calculations are, in principle,
straightforward applications of conventional ultrafast pulse
optics. Our paper provides physical understanding of the
self-seeding setup with a grating monochromator, and we
expect that this study can be useful in the design stage of
self-seeding setups.

THEORETICAL BACKGROUND
Pulse-front Tilt from Gratings
Ultrashort X-ray FEL pulses are usually represented as

products of electric �eld factors separately dependent on

Figure 1: An undistorted pulse beam (left) and a beam with
pulse front tilt (right) (adapted from literature, see [1] for
references).

Figure 2: Geometry of diffraction grating scattering.

space and time. The assumption of separability of the spa-
tial (or spatial frequency) dependence of the pulse from the
temporal (or temporal frequency) dependence is usually
made for the sake of simplicity. However, when the ma-
nipulation of ultrashort X-ray pulses requires the introduc-
tion of coupling between spatial and temporal frequency
coordinates, such assumption fails. The direction of en-
ergy �ow -usually identi�ed as rays directions- is always
orthogonal to the surface of constant phase, that is to the
wavefronts of the corresponding propagating wave. If one
deals with ultrashort X-ray pulses, one has to consider, in
addition, planes of constant intensity, that is pulse fronts.
Fig. 1 shows a schematic representation of the electric
�eld pro�le of an undistorted pulse and one with a pulse-
front tilt. A distortion of the pulse front does not affect
propagation, because the phase fronts remain unaffected.
However, for most applications, including self-seeding ap-
plications, it is desirable that these fronts be parallel to the
phase fronts, and therefore orthogonal to the propagating
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direction. A pulse-front tilt can be present in the beam due
to the propagation through a grating monochromator. As
shown in Fig. 2, the input beam is incident on the grat-
ing at an angle θi. The diffracted angle θD is a function
of frequency, according to the well-known plane grating
equation. Assuming diffraction into the �rst order, one has
λ = d(cos θi − cos θD), where λ = 2πc/ω, and d is the
groove spacing. This describes the basic working of a grat-
ing monochromator. By differentiating this equation one
obtains dθD

dλ = 1
θDd , where we assume grazing incidence

geometry, θi � 1 and θD � 1. The physical mean-
ing is that different spectral components of the outcom-
ing pulse travel in different directions. The electric �eld
of a pulse including angular dispersion can be expressed in
the Fourier domain {kx, ω} as E(kx − pω, ω), while the
inverse Fourier transform from the {kx, ω} domain to the
space-time domain {x, t} can be expressed asE(x, t+px),
which is the electric �eld of a pulse with a pulse-front tilt.
The tilt angle γ is given by tan γ = cp. More speci�cally
p = dkx

dω = k dθD
dω = λ

c
dθD
dλ = λ

cθDd . Therefore one con-
cludes that the pulse-front tilt is invariably accompanied by
angular dispersion. It follows that any device like a grating
monochromator, that introduces an angular dispersion, also
introduces signi�cant pulse-front tile, which is problematic
for seeding.

Transformation of FEL ulses by �rystals
The development of self-seeding schemes in the hard

X-ray wavelength range necessarily involves crystal
monochromators. Recently, the spatiotemporal coupling
in the electric �eld relevant to self-seeding schemes with
crystal monochromators has been analyzed in the frame of
classical dynamical theory of X-ray diffraction by Lind-
berg and Shvyd’ko(see [1] for references). This analysis
shows that a crystal in Bragg re�ection geometry trans-
forms the incident electric �eld E(x, t) in the {x, t} do-
main into E(x − at, t), that is the �eld of a pulse with a
less well-known distortion. The physical meaning of this
distortion is that the beam spot size is independent of time,
but the beam central position changes as the pulse evolves
in time. One of the aims of this subsection is to disentan-
gle what is speci�c to the transformation by a crystal and
what is intrinsic to the grating case. Our purpose here is
not that of presenting novel results but, rather, to attempt a
more intuitive explanation of spatiotemporal coupling phe-
nomena in the dynamical theory of X-ray diffraction, and
to convey the importance and simplicity of already known
results. We begin our analysis by specifying the scatter-
ing geometry under study. The angle between the physical
surface of the crystal and the re�ecting atomic planes is
an important factor. The re�ection is said to be symmet-
ric if the surface normal is perpendicular to the re�ecting
planes in the case of Bragg geometry. We shall examine
only the symmetric Bragg case. Let us consider an electro-
magnetic plane wave in the X-ray frequency range incident
on an in�nite, perfect crystal. Within the kinematical ap-
proximation, according to the Bragg law, constructive in-

terference of waves scattered from the crystal occurs if the
angle of incidence, θi and the wavelength, λ, are related by
the well-known relation λ = 2d sin θi, assuming re�ection
into the �rst order. This equation shows that for a given
wavelength of the X-ray beam, diffraction is possible only
at certain angles determined by the interplanar spacings d.
It is important to remember the following geometrical rela-
tionships:
1. The angle between the incident X-ray beam and nor-

mal to the re�ection plane is equal to that between the nor-
mal and the diffracted X-ray beam. In other words, Bragg
re�ection is a mirror re�ection, and the incident angle is
equal to the diffracted angle (θi = θD).
2. The angle between the diffracted X-ray beam and

the transmitted one is always 2θi. In other words, incident
beam and forward diffracted (i.e. transmitted) beam have
the same direction.
We now turn our attention beyond the kinematical ap-

proximation to the dynamical theory of X-ray diffraction
by a crystal. An optical element inserted into the X-ray
beam is supposed to modify some properties of the beam
as its width, its divergence, or its spectral bandwidth. It is
useful to describe the modi�cation of the beam bymeans of
a transfer function. The re�ectivity curve - the re�ectance -
in Bragg geometry can be expressed in the frame of dynam-
ical theory as R(θi, ω) = R(Δω + ωBΔθ cot θB), where
Δω = (ω−ωB) andΔθ = (θi − θB) are the deviations of
frequency and incident angle of the incoming beam from
the Bragg frequency and Bragg angle, respectively. The
frequency ωB and the angle θB are given by the Bragg
law: ωB sin θB = πc/d. We follow the usual procedure
of expanding ω in a Taylor series about ωB . Consider a
perfectly collimated, white beam incident on the crystal. In
kinematical approximation R is a Dirac δ-function, which
is simply represented by the differential form of Bragg law:
dλ/dθi = λ cot θi. In contrast to this, in dynamical theory
the re�ectivity width is �nite. This means that there is a re-
�ected beam even when incident angle and wavelength of
the incoming beam are not related exactly by Bragg equa-
tion. It is interesting to note that the geometrical relation-
ships 1. and 2. are still valid in the framework of dynam-
ical theory. In particular, re�ection in dynamical theory is
always a mirror re�ection. We underline here that if we
have a perfectly collimated, white incident beam, we also
have a perfectly collimated re�ected beam. Its bandwidth
is related with the width of the re�ectivity curve. We will
regard the beam as perfectly collimated when the angular
spread of the beam is much smaller than the angular width
of the transfer function R. It should be realized that the
crystal does not introduce an angular dispersion similar to
a grating or a prism. However, a more detailed analysis
based on the expression for the re�ectivity shows that a
less well-known spatiotemporal coupling exists. The fact
that the re�ectivity is invariant under angle and frequency
transformations obeying Δω + ωBΔθ cot θB = const is
evident, and corresponds to the coupling in the Fourier do-
main {kx, ω}. One might be surprised that the �eld trans-
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formation for an XFEL pulse after a crystal in the {x, t} do-
main is given by Eout(x, t) = E(x − ct cot θB, t), where
kx = ωBΔθ/c. In general, one would indeed expect the
transformation to be symmetric in both the {kx, ω} and
in the {x, t} domain due to the symmetry of the transfer
function. However, it is reasonable to expect the in�u-
ence of a nonsymmetric input beam distribution. In the
self-seeding case, the incoming XFEL beam is well col-
limated, meaning that its angular spread is a few times
smaller than angular width of the transfer function. Only
the bandwidth of the incoming beam is much wider than
the bandwidth of the transfer function. In this limit, we
can approximate the transfer function in the expression
for the inverse temporal Fourier transform as a Dirac δ-
function. This gives Eout(x, t) = ξ(t)b(x − ct cot θB),
where ξ(W ) is the inverse Fourier transform of the re-
�ectivity curve. In the opposite limit when the incom-
ing beam has a wide angular width and a narrow band-
width we take the transfer function in the inverse spa-
tial Fourier transform as a Dirac δ-function. This gives
Eout(x, t) = ξ(x tan θB/c)a(t−(x/c) tan θB). These two
limits represent the two sides of the symmetry of the trans-
fer function. The last expression Eout(x, t) is the �eld of
a pulse with a pulse front tilt. Typically one would think
that a pulse front tilt can be introduced only by dispersive
elements like gratings or prisms. Here we presented an ex-
ample in which no dispersive elements exists, and we stress
that angular dispersion can be introduced by non dispersive
element like crystals too. Although we began by consider-
ing a case of re�ection transfer function in Bragg re�ection
geometry, none of our arguments depends on that fact. The
relation for the re�ectance still holds if the transfer function
R is referred to the transmittance in Bragg re�ection geom-
etry. For the transmitted beam, all derivations are worked
out in the same way we have done here and gives asymp-
totic expression for �eld of forward scattered pulses.

MODELING OF SELF-SEEDING SETUP
A self-seeding setup should be compact enough to �t

one undulator segment. In this case its installation does
not perturb the undulator focusing system and allows for
the safe return to the baseline mode of operation. The de-
sign adopted for the LCLS is the novel one by Y. Feng et
al. (see [1] for references), and is based on a planar VLS
grating. It is equipped only with an exit slit. Such design
includes four optical elements, a cylindrical and spherical
focusing mirrors, a VLS grating and a plane mirror in front
of the grating. The optical layout of the monochromator is
schematically shown in Fig. 3.
A simpli�ed diagram for analyzing the grating

monochromator is shown in Fig. 4. We will assume that
the optical system used for imaging purposes is the well-
known two-lens image formation system. With reference
to Fig. 3, the VLS grating is represented by a combination
of a planar grating with �xed line spacing and a lens, with
the focal length of the lens equal to the focal length of the
VLS grating. The analysis of the grating monochromator

Figure 3: Optics for the compact grating monochromator
originally proposed at SLAC (see [1] for references) for
the soft X-ray self-seeding setup.

Figure 4: Diagram of the self-seeding grating monochro-
mator used in theoretical analysis (adapted from literature,
see [1] for references).

is simpli�ed by recognizing that the grating can be shifted
from a position immediately before the lens to a position
immediately after the object plane. The monochromator
is treated assuming no aberrations. This approximation is
useful, since for the design shown on Fig. 3 the aberration
effects are negligible (see [1] for references). This simpli-
�es calculations and allows analytical results to be derived.
The angular dispersion of the grating causes a separation
of different optical frequencies at the Fourier plane of the
�rst focusing element (lens). Therefore, this system be-
comes a tunable frequency �lter if a slit is placed at the
Fourier plane. We assume that the two lenses in Fig. 4
are not identical, so that this scheme allows for magni�-
cation by changing the focal distance of the second lens.
It is important to analyze the output �eld from the grating
monochromator quantitatively. In [1] we calculated analyt-
ically the propagation of the input signal to different planes
of interest within the self-seeding monochromator, as indi-
cated in Fig. 4. Here we will simply present some of the
conclusions in [1].
We �x the slit function S as S(x) = 1 for |x| < ds

and S(x) = 0 for |x| > ds. Given a slit with half size
ds, we introduce a normalized notion of slit size α =
ds

σf
= ds

kσ
βf . It is possible to show the output character-

istics of the radiation as a function of the slit size by means
of universal plots. We �rst consider the resolving power
R = (Δω/ω)−1

FWHM. We introduce the resolving power
Rn normalized to the inverse of the maximal bandwidth,
that is the bandwidth in the limiting case for α � 1, as
Rn = R

(
1.18θid
2πσ

)
. The behavior of Rn as a function of

α is shown in Fig. 5. The resolution of monochroma-
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Figure 5: Resolving power normalized to the asymptotic
case for α � 1 as a function of α.

Figure 6: Transverse spot size of the photon beam normal-
ized to the asymptotic case for α � 1 as a function of α.
We assume fθi/f ′θD = 1.

tor increases as the slit size decreases. The 90% of the
maximal resolution level is met for normalized slit width
less than α < 1. However, the energy of the seed pulse
decreases proportionally to the decrease of the slit width.
Moreover, decreasing the slit width will also cause an in-
crease of the output beam size. This will lead to spatial
mismatch between the seed beam and the FEL mode in
the second undulator. The relationship between the beam

Figure 7: Dependence of the spatiotemporal coupling as a
function of α.

transverse size (in terms of FWHM) and slit width is shown
in Fig. 6, where we plot the transverse spot size of the pho-
ton beam normalized to the asymptotic case for α � 1
as a function of α. To summarize, it is not recommended
that the normalized slit width be narrower than unity if a
reasonable seed �eld amplitude is required. Finally, a use-
ful �gure of merit measuring the spatiotemporal coupling
can be found in literature (see [1] for references). Con-
sidering the angular dispersion this parameter can be writ-
ten as ρ =

∫
dkxdΔωI · kxΔω

<(δkx)2>1/2<(δω)2>1/2 , where
< (δkx)

2 >=
∫
dkxdΔωI(kx,Δω)k2x, < (δω)2 >=∫

dkxdΔωI(kx,Δω)Δω2, I(kx,Δω) = |E(kx,Δω)|2.
The range of ρ is in [−1, 1] and readily indicate the severity
of these distortions. To estimate the pulse front tilt distor-
tion calculate the pulse front tilt parameter ρ as a function
of the slit width α. The results are shown in Fig. 7. It is
found to be larger than 50% for a slit width α > 1. There-
fore, standard tuning of the seed monochromator will lead
to signi�cant spatiotemporal coupling in the seed pulses.
The effect of pulse front tilt distortion can be reduced if
the slit width will be narrower than α < 1. However,
the reduction of the pulse front tilt in�uence is accompa-
nied by signi�cant loss in seed signal amplitude. On the
one hand, decreasing the slit width increases the resolv-
ing power and suppresses the pulse front tilt distortion. On
the other hand, it decreases the seed power and increases
the transverse mismatch with the FEL mode in the second
undulator. As a result, a tradeoff must be reached between
achievable resolution and effective level of the input signal.
Transverse coherence of XFEL radiation is settled without
seeding. This is due to the transverse eigenmode selec-
tion mechanism: roughly speaking, only the ground eigen-
mode survives at the end of ampli�cation process. It fol-
lows that the spatiotemporal distortions of the seed pulse
do not affect the quality of the output radiation. They only
affect the input signal value. Therefore, the relevant value
for self-seeded operation is the input coupling factor be-
tween the seed pulsed beam and the ground eigenmode of
the FEL ampli�er. In order to model the performance of a
soft X-ray self-seeded FEL with a grating monochromator,
one naturally starts with the gratingmonochromator optical
system. One aspect of optimizing the output characteristics
of the self-seeded FEL involves the speci�cation of spectral
width, peak power, pulse-front tilt parameter and transverse
size of the seed pulse as a function of the slit width. This
can be achieved by purely analytical methods. Another as-
pect of the problem is the modeling of the FEL process
including a seed pulse with spatio-temporal distortions and
transverse mismatching with the ground FEL eigenmode.
This study can be made only with numerical simulation
code, and is left for the future.
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