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Abstract
One of the most important subjects of the high-gain FEL

engineering is the calculation of the gain length, and fitting

formulas are frequently used for this purpose. Here we re-

fer to Ming Xie fitting formulas [1] and fitting formulas for

optimized FEL written down in an explicit form in terms

of the electron beam and undulator parameters [2]. In this

paper we perform generalization of these fitting formulas

to the case of harmonic lasing.

INTRODUCTION
In order to calculate FEL gain length (and, therefore, sat-

uration length) one has to solve an eigenvalue equation.

Eigenvalue equation for harmonic lasing was derived in

the framework of one-dimensional (1D) model in [3, 4],

and a thorough 1D analysis can be found in [5]. Usu-

ally, more realistic 3D model is required to make conclu-

sions on a possibility of practical realization of some op-

tion. Three-dimensional analysis was done in [6], where

an eigenvalue equation was derived based on an approach

developed in [1] for the fundamental frequency. However,

this eigenvalue equation is rather complicated and can be

solved only numerically. One can correctly calculate the

gain length for a specific set of parameters, but it is very

difficult to trace general dependencies and perform analy-

sis of the parameter space.

In this paper we perform a parametrization of the solu-

tion of the eigenvalue equation for lasing at odd harmon-

ics [6], and present explicit (although approximate) expres-

sions for FEL gain length, optimal beta-function, and sat-

uration length taking into account emittance, betatron mo-

tion, diffraction of radiation, energy spread and its growth

along the undulator length due to quantum fluctuations of

the undulator radiation. Considering 3rd harmonic lasing

as a practical example, we come to the conclusion that it is

much more robust than usually thought, and can be widely

used at the present level of accelerator and FEL technology.

We surprisingly find out that in many cases the 3D model

of harmonic lasing gives more optimistic results than the

1D model. For instance, one of the results of our studies

is that in a part of the parameter space, corresponding to

the operating range of soft X-ray beamlines of X-ray FEL

facilities, harmonics can grow faster than the fundamental

mode.

EIGENVALUE EQUATION
In Ref. [1] the eigenvalue equation for a high-gain FEL

was derived that includes such important effects as diffrac-

tion of radiation, betatron motion of particles and longitu-

dinal velocity spread due to emittance, energy spread in the

electron beam, frequency detuning. The eigenvalue equa-

tion is an integral equation which can be evaluated numeri-

cally for any particular parameter set with a desirable accu-

racy. The generalization of this eigenvalue equation to the

case of harmonic lasing was done in [6]. Here we present

the latter result for the growth rate of TEMnm mode in a

dimensionless form accepted in [7]:

Φ̄nm(p) = − h2A2
JJh

A2
JJ1(2 ihBΛ̂− p2)

∞∫
0

d p
′p′Φ̄nm(p′)

×
∞∫
0

ζ d ζ

(1− ihBk̂2
βζ/2)

2
exp

[
−h2Λ̂2

Tζ
2

2
− (Λ̂ + i Ĉ)ζ

]

× exp

[
− p2 + p′2

4(1− ihBk̂2
βζ/2)

]
In

[
pp′ cos(k̂βζ)

2(1− ihBk̂2
βζ/2)

]
(1)

where h = 1, 3, 5, ... is harmonic number, In is the mod-

ified Bessel function of the first kind. The normalized

growth rate Λ̂ = Λ/Γ has to be found from numerical so-

lution of the integral equation. The following notations are

used here: r̂ = r/(σ
√
2), B = 2σ2Γω1/c is the diffrac-

tion parameter, ω1 is the fundamental frequency, σ =
√
εβ

is the transverse rms size of the matched Gaussian beam,

emittance ε is simply given by ε = εn/γ with εn being

normalized rms emittance, k̂β = kβ/Γ is the betatron mo-

tion parameter, kβ = 1/β is the betatron wavenumber, β is

the beta-function, Λ̂2
T = σ2

γ/(ρ̄γ)
2 is the energy spread pa-

rameter, Ĉ =
[
kw − ωh/(2hcγ

2
z )
]
/Γ is the detuning pa-

rameter, ωh � hω1, Γ =
[
A2

JJ1Iω
2
1θ

2
s

(
IAc

2γ2
zγ

)−1
]1/2

is the gain factor, ρ̄ = cγ2
zΓ/ω1 is the efficiency param-

eter, θs = K/γ, K is the rms undulator parameter, γ is

relativistic factor, γ−2
z = γ−2 + θ2s , kw is the undula-

tor wavenumber, I is the beam current, IA = 17 kA is

the Alfven current, AJJh = J(h−1)/2(hK
2/2(1 +K2)) −

J(h+1)/2(hK
2/2(1 + K2)). The coupling factors for the

1st, 3rd, and 5th harmonics are shown in Fig. 1. When

the rms undulator parameter K is large, the coupling fac-

tors are AJJ1 � 0.696, AJJ3 � 0.326, AJJ5 � 0.230.

Asymptotically for large h we have AJJh � 0.652 h−2/3.

Note that the scaling factors (Γ, ρ̄) reflect the growth rate

of the fundamental harmonic. The efficiency parameter ρ̄
is related to the corresponding parameter ρ [8] of the one-

dimensional model as follows: ρ̄ = ρB1/3.

One can observe that the equation (1) can be rewritten

such that it looks the same for all harmonics:
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Φ̄nm(p) = − 1

2 i B̃Λ̃− p2

∞∫
0

d p
′p′Φ̄nm(p′)

×
∞∫
0

dx
x

(1− i B̃k̃2
βx/2)

2
exp

[
− Λ̃2

Tx
2

2
− (Λ̃ + i C̃)x

]

× exp

[
− p2 + p′2

4(1− i B̃k̃2
βx/2)

]
In

[
pp′ cos(k̃βx)

2(1− i B̃k̃2
βx/2)

]
, (2)

with the following scaling factors: Γ̃ =[
A2

JJhIω
2
hθ

2
s

(
IAc

2γ2
zγ

)−1
]1/2

and ρ̃ = cγ2
z Γ̃/ωh.

Note that the gain parameter can be rewritten as

Γ̃ =

(
A2

JJhIω
2
hK

2(1 +K2)

IAc2γ5

)1/2

(3)

The new scaled parameters are now written as fol-

lows: Λ̃2
T = σ2

γ/(ρ̃γ)
2 is the energy spread parame-

ter, k̃β = kβ/Γ̃ is the betatron motion parameter, C̃ =[
kw − ωh/(2hcγ

2
z )
]
/Γ̃ is the detuning parameter, and

B̃ = 2σ2Γ̃ωh/c (4)

is the diffraction parameter.

In this paper we concentrate on the case when beta-

function is optimized for the highest FEL gain. Since

diffraction parameter depends on beta-function, it is more

convenient to go over to the normalized parameters other

then those introduced above. Indeed, the diffraction param-

eter can be rewritten as B̃ = 2ε̃/k̃β , where ε̃ = 2πε/λh and

λh = 2πc/ωh. Then we can go from parameters (B̃, k̃β)

to (ε̃, k̃β), and the Eq. (2) becomes

Φ̄nm(p) = − 1

4 i ε̃Λ̃/k̃β − p2

∞∫
0

d p
′p′Φ̄nm(p′)

×
∞∫
0

dx
x

(1− i ε̃k̃βx)2
exp

[
− Λ̃2

Tx
2

2
− (Λ̃ + i C̃)x

]

× exp

[
− p2 + p′2

4(1− i ε̃k̃βx)

]
In

[
pp′ cos(k̃βx)

2(1− i ε̃k̃βx)

]
. (5)

Our goal is to find the reduced growth rate (the real part

of the eigenvalue) ReΛ̃ = ReΛ/Γ̃ of the transverse mode

TEM00 when an FEL lases at h-th harmonic. The field

gain length of this mode is then simply Lg = 1/ReΛ. In

the case of a SASE FEL the detuning parameter falls out

of the parameters of the problem since the lasing always

takes place at the optimal detuning. Thus, when solving

the eigenvalue equation, we should always find the eigen-

value at the optimal detuning. Let us also assume at the first

step that the energy spread parameter is negligibly small

(denoting the gain length for this case as Lg0), so that its

influence on FEL operation can be neglected. In this case

the reduced growth rate Re

˜

Λ depends only on two dimen-

sionless parameters: ε̃ and k̃β . If in addition one optimizes

beta-function, then the reduced growth rate is the function

of the only parameter, scaled emittance: ReΛ̃ = f(ε̃). Cor-

respondingly, the field gain length can be written as fol-

lows:

Lg0 = [Γ̃f(ε̃)]−1 (6)

Numerical solution of the eigenvalue equation (5) is

time-consuming, so we used an approximate solution [7]

which agrees very well (to better than 1% in the whole

parameter space) with the solution of Eq. (5). In the

most interesting parameter range, 1 < ε̃ < 5, we have

found [2] that the function f(ε̃) is well approximated as

f(ε̃) ∝ ε̃−5/6, so that the gain length in the case of negligi-

ble energy spread and optimal beta-function is

Lg0 � a1Γ̃
−1ε̃5/6 , (7)

where a1 is the fitting coefficient. Now we would like to

include the effects of the energy spread. For that we present

the growth rate as Lg = Lg0(1 + δ), where δ depends on

the energy spread. Again, for the optimal beta-function,

we found that the fit δ ∝ Λ̃2
Tε̃

5/4 works very well in the

wide range of values of the energy spread parameter. Thus,

the field gain length for the optimal beta-function can be

written as follows:

Lg � a1Γ̃
−1ε̃5/6(1 + a2Λ̃

2
Tε̃

5/4) . (8)

Optimizing fitting coefficients a1 and a2 in the range of

parameters, specified in (13), (14), we obtain the Eqs. (10)-

(12). In a similar way we obtained the expression (15) for

the optimal beta-function. In particular, in the case of neg-

ligibly small energy spread we used the following approx-

imation: (k̃β)opt ∝ ε̃−3/2.

GAIN LENGTH OF HARMONIC LASING
The results of this Section are generalizations of the re-

sults of Ref. [2] for the fundamental frequency to the case

of harmonic lasing. Let us consider an axisymmetric elec-

tron beam with a current I , and a Gaussian distribution in

transverse phase space and in energy. The resonance con-

dition for the fundamental wavelength is written as:

λ1 =
λw(1 +K2)

2γ2
. (9)

More generally, lasing in a planar undulator can be

achieved at the odd harmonics defined by the condition

λh =
λ1

h
, h = 1, 3, 5, ...

Here λw is the undulator period, γ is relativistic factor,

K = 0.934 × λw[cm] × Brms[T] is the rms undulator pa-

rameter, and Brms is the rms undulator field.

In what follows we assume that the harmonic with a

number h lases to saturation, while lasing at harmonics
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Figure 1: Coupling factors for the 1st, 3rd, and 5th harmonics

(denoted with 1, 3, and 5, correspondingly) versus rms undulator

parameter.

with lower numbers and at the fundamental wavelength

is suppressed with the help of phase shifters or by other

means (see [9] for details) . We also assume that the beta-

function is optimized so that the FEL gain length at a con-

sidered harmonic achieves the minimum for given wave-

length, beam and undulator parameters. Under this con-

dition the solution of the eigenvalue equation for the field

gain length of the TEM00 mode can be approximated ac-

cording to (8):

Lg � Lg0 (1 + δ) , (10)

where

Lg0 = 1.67

(
IA
I

)1/2
(εnλw)

5/6

λ
2/3
h

(1 +K2)1/3

h5/6KAJJh
, (11)

and

δ = 131
IA
I

ε
5/4
n

λ
1/8
h λ

9/8
w

h9/8σ2
γ

(KAJJh)2(1 +K2)1/8
. (12)

Here εn = γε is the rms normalized emittance, σγ =
σE/mc2 is the rms energy spread in units of the rest elec-

tron energy. Also note that all the formulas of this Section

are valid in the case of helical undulator and the fundamen-

tal wavelength (h = 1), in this case the coupling factor is

equal to 1 [2].

The formulas (10)-(12) provide an accuracy better than

5 % in the range of parameters

1 <
2πε

λh
< 5 , (13)

δ < 2.5

{
1− exp

[
−1
2

(
2πε

λh

)2
]}

(14)

In fact, the formulas (10)-(12) can also be used well be-

yond this range, but the above mentioned accuracy is not

guaranteed.

We also present here an approximate expression for the

optimal beta-function (an accuracy is about 10 % in the

above mentioned parameter range):

βopt � 11.2

(
IA
I

)1/2
ε
3/2
n λ

1/2
w

λhh1/2KAJJh
(1+8δ)−1/3 (15)

To estimate the saturation length, one can use the result

from Ref. [10], generalized to the case of harmonic lasing:

Lsat � 0.6 Lg ln

(
hNλh

Lg

λw

)
. (16)

Here Nλh
is a number of electrons per wavelength of the

considered harmonic. For operating VUV and X-ray SASE

FELs one typically has Lsat � (10± 1)× Lg .

Energy spread in the electron beam grows along the un-

dulator length due to the quantum diffusion [11,12]. In this

case an effective parameter δ can be introduced in order to

describe an increase in saturation length due to this effect,

see [9]. Let us also note that all the above presented re-

sults are reduced to those of Ref. [2] for the case of the first

harmonic (h = 1). All these results were obtained under

the assumption that beta-function is optimal (i.e. it is given

by Eq. (15)). However, for technical reasons this is not al-

ways the case in real machines, and it could often be that

β > βopt. In such a case the gain length can be approxi-

mated as follows:

Lg(β) � Lg(βopt)

[
1 +

(β − βopt)
2(1 + 8δ)

4β2
opt

]1/6
.

(17)

Finally, let us note that widely used Ming Xie formulas

[13, 14] can be easily generalized to the case of harmonic

lasing. Comparing two approaches to parametrization of

FEL gain length, we have found that they agree reasonably

well, also for non-optimal beta-functions and well beyond

the range given by Eq. (13).

GENERALIZATION OF MING XIE
FORMULAS

In Refs. [13, 14] the fitting formulas were presented that

approximate FEL power gain length, Lg . Note that in our

parametrization we use the same notation for the field gain

length which is twice longer. The power gain length of the

fundamental harmonic was expressed in [13,14] as follows:

L1d

Lg
=

1

1 + Λ(ηd, ηε, ηγ)
, (18)

where L1d is the 1D gain length for the cold beam, and

Λ depends on the three dimensionless parameters: ηd, ηε,
and ηγ . This dependence can be found in [13, 14], it was
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obtained by fitting the solution of the eigenvalue equation

with the help of 19 fitting coefficients.

We can generalize these results for calculation of power

gain length L
(h)
g of harmonic lasing in a simple way.

Eq. (18) can be generalized as

L
(h)
1d

L
(h)
g

=
1

1 + Λ(η
(h)
d , η

(h)
ε , η

(h)
γ )

. (19)

The 1D gain length of harmonics can be calculated as

L
(h)
1d =

(
A2

JJ1

hA2
JJh

)1/3

L1d ,

and the function Λ now depends on the three generalized

parameters:

η
(h)
d =

(
A2

JJ1

hA2
JJh

)1/3
ηd
h

, η(h)ε =

(
A2

JJ1

hA2
JJh

)1/3

hηε ,

η(h)γ =

(
A2

JJ1

hA2
JJh

)1/3

hηγ .

COMPARISON OF THE TWO
APPROACHES

We present a comparison for the case of LCLS. The main

parameters are as follows [15]: undulator period is 3 cm,

rms undulator parameter is 2.475, peak current of the elec-

tron bunch is 3 kA, normalized emittance is 0.4 mm mrad,

slice energy spread is 1.4 MeV. Beta function scales with

electron energy as β[m] = 30E[GeV ]
13.6 . In Fig. 2 we present

the power gain length versus wavelength for lasing at the

fundamental and at the third harmonic, calculated with our

formulas and with generalized Ming Xie formulas. One

can notice a good agreement of two different parametriza-

tions of the FEL gain length. It is also worth noticing that

in the range of wavelengths 1.5 - 5 A the third harmonic

gain length is slightly smaller than that of the fundamental

(achieved at a larger electron energy).
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