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Abstract
A new regime of the free-electron laser arises when the

recoil of the electron due to its scattering in the wiggler and
laser field cannot be neglected any more. In such a quan-
tum free-electron laser the discreetness of the momenta
becomes visible and leads to novel effects. We present a
quantum mechanical theory in this domain.

INTRODUCTION
Classical electrodynamics combined with classical sta-

tistical mechanics are sufficient [1] to describe today’s free-
electron laser (FEL) devices. However, new developments
in accelerator and laser physics raise hope for the experi-
mental realization of a quantum free-electron laser (QFEL).
In this paper we outline a theory of the QFEL guided by
techniques of quantum optics developed in the context of
the one-atom maser [2]. For an earlier and different ap-
proach towards the QFEL we refer to [3][4].
We start by recalling the Hamiltonian [5] correspond-

ing to a one-dimensional, single-particle description of the
FEL in the co-moving Bambini-Renieri frame where the
electrons move with a non-relativistic velocity. Based on
the classical free-electron laser (CFEL) and introducing
recoil effects by hand we illustrate the emergence of the
quantum mechanical regime of the FEL from the pendu-
lum equation. Moreover, a perturbation theory in which
these effects are fully taken into account illustrates in a
vivid way the characteristic features of the QFEL. Here, the
electron can emit or absorb only a single photon leading to
a two-level dynamics. In this way we obtain an analytically
solvable model for the QFEL. The resulting gain function
confirms the applicability of the two-level QFEL model.
Finally, we establish the key experimental requirements for
realizing a QFEL device. Our conditions are in agreement
with the ones put forward in [4].

QUANTUMMODEL OF FEL
The interaction of a single electron in the FEL with the

wiggler field and the emitted laser field, when described in
the co-moving Bambini-Renieri frame where the frequen-
cies ω = ck of both fields coincide, is determined [5] by
the Hamiltonian Ĥ ≡ ĤF + ĤI consisting of the free part
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ĤF ≡ p̂2

2m
+ h̄ω

(
â†LâL + â†WâW

)
(1)

and the interaction part

ĤI ≡ h̄g̃
(
â†LâWe−i2kẑ + âLâ

†
Wei2kẑ

)
(2)

with the coupling strength g̃. The creation or annihilation
operators â†L or âL and â†W or âW of the laser and wig-
gler field, respectively, obey the familiar commutation re-
lation [âj , â

†
j ] = 1, where j = L and W. Moreover, ẑ

and p̂ denote the position and momentum operator of the
electron in the Bambini-Renieri frame obeying [ẑ, p̂] = ih̄
and m ≡ me(1 + a20) represents the shifted mass of the
electron where a0 is the wiggler parameter, k ≡ 2π/λ the
wave number of the laser and wiggler field with wavelength
λ and me the rest mass of the electron. The exponential
e±i2kẑ in Eq. (2) indicates a shift in the momentum of the
electron by the recoil q ≡ 2h̄k when one photon of the
wiggler scatters into the laser field or vice versa.
In the interaction picture Ĥ transforms into

Ĥ
(I)
I ≡ h̄g

(
â†Le

−i2kẑe−i2k(p̂−q/2)t/m + h.c.
)

(3)

where we have used the semiclassical approximation â†W ≈
âW ≈ √

nW for the wiggler field.
Assuming circularly polarized vector potentials

ÂL ≡ AL

(
eâLe

−i(ωt−kẑ) + h.c.
)

(4)

and
ÂW = AW

(
eâWe−i(ωt+kẑ) + h.c.

)
(5)

for the laser field, and the wiggler field in Weizsäcker-
Williams approximation of strengths AL and AW, respec-
tively, and polarization vectors that obey the relation e2 =
e
∗2 = 0, we obtain the coupling constant

g =
e20
h̄m

ALAW
√
nW (6)

with the elementary charge e0.
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CFEL VERSUS QFEL
The Hamiltonian of the CFEL in the low gain regime

which follows from Ĥ in the Schrödinger picture when we
turn all operators into c-numbers and neglect the number
nL of photons of the laser in Eq. (1) reads

Hcl ≡ p2

2m
+ 2h̄g

√
nL cos(2kz). (7)

Using the Hamilton equations ż = ∂Hcl/∂p and ṗ =
−∂Hcl/∂z the dynamics of the ponderomotive phase φ ≡
2kz + π is determined by a pendulum equation

φ̈+Ω2 sinφ = 0 (8)

with frequency Ω =
√
8k2h̄g

√
nL/m, in agreement with

[1] where Eq. (8) is derived in the laboratory frame.

2h̄k
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Figure 1: Transition from the classical to the quantum FEL
illustrated in phase space: In the classical regime the tra-
jectories of the FEL are continuous. In the quantum regime
the discreetness of the momentum states manifests itself
and the trajectories become discontinuous.

By definition the classical theory lacks the possibility of
including the recoil of the electron and we have to intro-
duce it by hand as illustrated in Fig. 1. Indeed, due to en-
ergy and momentum conservation in the emission or ab-
sorption process of a laser photon the momentum of the
electron changes by ±2h̄k. Hence, the motion of the elec-
tron in phase space cannot be continuous as predicted by
the pendulum equation (8). Discrete momentum states oc-
cur as indicated in Fig. 1 when the recoil is not negligible
any more. The regime of the QFEL is reached when only
two distinct momentum states are allowed in phase space.
This condition reduces to q > pmax where the maximally
achievable momentum pmax is determined by

p2max

2m
= Hsep = 2h̄g

√
nL. (9)

Here Hsep is the energy of an electron moving along the
separatrix of the classical HamiltonianHcl.
The QFEL condition q > pmax finally translates into the

condition

α ≡ 2h̄g
√
N

q2/2m
< 1 (10)

for the QFEL parameter α with the maximal photon num-
ber N .

REACHING THE TWO-LEVEL LIMIT
The distinction between the CFEL and QFEL stands out

most clearly in the diagonal elements Wn(t) of the den-
sity matrix of the laser field describing its photon statistics.
Indeed, their time dependence [6]

Wn(t+ τ) =
∑
l

Wl(t)
∣∣∣〈n, p0 + (l − n)q |Û(τ)| l, p0〉

∣∣∣2
(11)

follows from the time evolution operator

Û(τ) ≡ T

⎡
⎣exp

⎛
⎝− i

h̄

τ∫
0

dt Ĥ
(I)
I

⎞
⎠

⎤
⎦ (12)

with the Dyson time-ordering operator T and the interac-
tion time τ of the electron with the field. The states | n, p〉
are the eigenstates of the photon number operator â†LâL of
the laser field and the momentum operator p̂, and p0 de-
notes the initial momentum.
Evaluating Û up to second order in g and using the

coarse-grain derivative the master equation reads

Ẇn = r(gτ)2
[
(n+ 1)S2

+Wn+1 + nS2
−Wn−1

− (
(n+ 1)S2

− + nS2
+

)
Wn

]
,

(13)

where we have introduced the electron injection rate r ≡
Nel/τ [6] and the functions

S± ≡ sin (k(p± q/2)τ/m)

k(p± q/2)τ/m
(14)

crucially determine the dynamics of the photon statistics.
Indeed, for

kqτ

m
> 1 (15)

the functions S± are well separated as indicated in Fig. 2.
In this case each momentum of the electron is connected to
the emission or absorption of a single laser photon. Start-
ing with an initial momentum p0 ≈ q/2 only an emission
driven by a non-vanishing value of S− will occur. After the
emission of one photon the electron recoils by an amount
q and the probability of emitting another photon becomes
approximately zero.
We note that the condition (15) was already obtained

in [7] by performing perturbation theory in the classical
regime. However, in our approach the recoil is fully taken
into account.
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Figure 2: Separation of momentum domains correspond-
ing to absorption and emission of laser photons defining
the QFEL illustrated here for kqτ/m = 8. Due to the re-
coil giving rise to well-separated functions S± the electron
cannot absorb or emit more than one laser photon.

RABI OSCILLATIONS IN THE QFEL
An analytically solvable model for the QFEL illustrated

in Fig. 3 and based on only two momentum states emerges
from the superposition

|Ψ(t)〉 ≡ ψe(t) |e〉+ ψg(t) |g〉 (16)

of the dressed excited state |e〉 ≡ |n0, p0〉 and the dressed
ground state |g〉 ≡ |n0 + 1, p0 − q〉 with the initial number
of photons n0 in the laser field.

p

|e〉

|g〉

q
2

0

−q
2

2h̄k
2h̄k

Figure 3: Two-level model of the QFEL: Whereas in an or-
dinary laser the states of the medium are determined by the
internal degrees of freedom, in the FEL this role is played
by the momentum states. In the limit of the QFEL the well-
separated functions S± ensure that mainly the two momen-
tum states |q/2〉 and |−q/2〉 of the electron take part in the
lasing process corresponding the creation of a laser pho-
ton at the expense of a wiggler photon giving rise to a total
momentum change of 2h̄k.

We choose the initial momentum p0 ≈ q/2 of the elec-

tron as to minimize the phase in the second exponent in
Eq. (3). Thus, we start in the regime where S− determines
the interaction in the FEL and other momenta correspond
to rapidly oscillating phases provided condition (15) is sat-
isfied.
In the spirit of the rotating wave approximation we as-

sume that the phases ∼ kq/m are larger than the cou-
pling strength g√n0 which leads us again to the condition
α < 1. This argument is another justification of the two-
level ansatz (16) for the QFEL.
Inserting Eq. (16) into the Schrödinger equation

ih̄
d

dt
|Ψ〉 = Ĥ

(I)
I |Ψ〉 (17)

yields coupled equations of motion for the amplitudes ψe

and ψg with the solutions

ψe(t) = eiδt/2
[
cos(λt)− i

δ/2

λ
sin(λt)

]
(18)

and
ψg(t) = −ie−iδt/2 g

√
n0 + 1

λ
sin(λt), (19)

where we have introduced the detuning parameter δ ≡
2k(p0 − q/2)/m.
Therefore, the dynamics of the QFEL consist of Rabi

oscillations between the dressed states |g〉 and |e〉 with the
QFEL frequency

λ ≡
√
g2(n0 + 1) + (δ/2)

2
. (20)

Starting with p0 ≈ −q/2 also leads us to a two-level
system with Rabi oscillations between |g〉 ≡ |n0, p0〉 and
|e〉 ≡ |n0 − 1, p0 + q〉 with amplitudes ψ̃e and ψ̃g . The
detuning is now given by δ̃ ≡ 2k(p0 + q/2)/m and the

Rabi frequency reads λ̃ ≡
√
g2n0 +

(
δ̃/2

)
.

QFEL GAIN CURVE
The classical gain curve of the FEL in the small signal

regime is given by Madey’s theorem [8]. In our model we
express the gain function

G ≡
∞∑

n=−∞

nPn(n0, p0) (21)

in terms of the probabilities Pn for scattering n photons
from the wiggler into the laser field, or vice versa in case
of negative values of n.
The QFEL model given by (16) yields the gain function

GQFEL(τ) =

⎧⎪⎪⎨
⎪⎪⎩
|ψg(τ)|2 for p0 ∈ (0, q)

−
∣∣∣ψ̃e(τ)

∣∣∣2 for p0 ∈ (−q, 0)

0 else

(22)

for the interaction time τ .
It is interesting to compare this expression and
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GPT ≡ n0(gτ)
2
(S2
− − S2

+

)
+ (gτ)2S2

− (23)

obtained with the help of Eq. (13) in perturbation theory
up to second order in g, to the gain function determined
by a simulation of the evolution of the transition proba-
bilities Pn. Here, we take into account the dressed states
|n0 + l, p0 − lq〉 with |l| ≤ 5. In Fig. 4 we compare the
so-calculated gain functions for α = 0.2 and the param-
eters n0 = 10, k = γ2π/λW with γ = 100 and wig-
gler wavelength λW = 10−6m. Here, we set the maxi-
mal photon number N = n0 + 5 and the interaction time
τ = π/2g

√
n0 + 1 corresponding to half of the Rabi oscil-

lation at resonance p0 = q/2. This figure clearly demon-
strates the validity of our two-level model for the QFEL.

GQFEL

GPT

Gsimulation

0�

1
2�1 1

2 1

�2

�1

0

1

2

p/q

G

Figure 4: Confirmation of the two-level model of the QFEL
by numerical simulation of the gain function for a small
QFEL parameter α = 0.2.

EXPERIMENTAL REQUIREMENTS
A comparison of the parameters of our model with the

corresponding quantities of the classical theory [1] con-
nects the QFEL parameter

α = 4

(
γmc

h̄kL
ρFEL

)3/2

(24)

with the Pierce parameter [10]

ρFEL =
1

2γ

(
Jeλ

2
Wa20

IA2π

)2/3

. (25)

Here, Je and IA = 17.045 kA denote the peak current
density of the electron beam and the Alfvén current, re-
spectively, together with the dimensionless energy γ ≡
E/mec

2 of the electron and the wave number kL = 2π/λL

of the emitted radiation. We note that in terms of these
quantities the QFEL condition (10) translates into the one
proposed in [3].
Assuming a laser wiggler with wavelength λW and in-

tensity I0 we obtain the dimensionless wiggler parameter

a0 = 0.85 × 10−9λW [μm]I
1/2
0 [W/cm2] [9] and further-

more kL = 4γ2kW/(1 + a0)
2. Hence, the QFEL condi-

tion (10) takes the form

Je <
γ6

λ7
W

6.938× 10−19AWm3

I0
[
1 + 7.2× 10−11W−1λ2

WI0
]3 (26)

connecting the key experimental quantities Je, γ, λW and
I0.
Further requirements, for instance on the emittance of

the electron beam pointed out in [4], are in full accordance
with this model.

SUMMARY
In conclusion, we have developed a theory of the QFEL.

Starting from the classical pendulum equation we have de-
rived the QFEL condition and have shown the characteristic
two-level dynamics. We have obtained the gain functions
in three different ways and have demonstrated the applica-
bility of our QFEL model. Moreover, we have established
the crucial experimental requirements for realizing a QFEL
device.
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