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Abstract
Technique of undulator tapering in the post-saturation

regime is used at the existing X-ray FELs for increasing

the radiation power. We present comprehensive analysis

of the problem in the framework of one-dimensional and

three-dimensional theory. We find that diffraction effects

essentially influence on the choice of the tapering strategy.

Our studies resulted in a general law of the undulator tapering

for a seeded FEL amplifier as well as for SASE FEL.

INTRODUCTION
Effective energy exchange between the electron beam

moving in an undulator and electromagnetic wave happens

when resonance condition takes place. In this case electro-

magnetic wave advances electron beam by one radiation

wavelength while electron beam passes one undulator pe-

riod. When amplification process enters nonlinear stage,

the energy losses by electrons become to be pronouncing

which leads to the violation of the resonance condition and

to the saturation of the amplification process. Application

of the undulator tapering [1] allows to a further increase

of the conversion efficiency. An idea is to adjust undulator

parameters (field or period) according to the electron energy

loss such that the resonance condition is preserved.

It is generally accepted that in the framework of the one-

dimensional theory an optimum law of the undulator taper-

ing should be quadratic [2–9]. Similar physical situation

occurs in the FEL amplifier with a waveguide [2]. In this

case radiation is confined within the waveguide. Parame-

ters of FEL amplifiers operating in the infrared, visible, and

x-ray wavelength ranges are such that these devices are de-

scribed in the framework of three dimensional theory with

an “open” electron beam, i.e. physical case of diffraction

in a free space. In this case the diffraction of radiation is

an essential physical effect influencing optimization of the

tapering process. Discussions and studies on the optimum

law of the undulator tapering in the three-dimensional case

are in the progress for more than 20 years. Our previous

studies were mainly driven by occasional calculations of per-

spective FEL systems for high power scientific (for instance,

FEL based γγ - collider ) and industrial applications (for
instance, for isotope separation, and lithography [10–12]).

Their parameter range corresponded to the limit of thin elec-

tron beam (small value of the diffraction parameter). In this

case linear undulator tapering works well from almost the

very beginning [6]. Comprehensive study devoted to the

global optimization of tapered FEL amplifier with “open”

electron beam has been presented in [4]. It has been shown

that: i) tapering law should be linear for the case of thin elec-

tron beam, ii) optimum tapering at the initial stage should

follow quadratic dependence, iii) tapering should start ap-

proximately two field gain length before saturation. New

wave of interest to the undulator tapering came with the

development of x-ray free electron lasers [13–20]. Undu-

lator tapering has been successfully demonstrated at long

wavelength FEL amplifiers [2, 21], and is routinely used at

x-ray FEL facilities LCLS and SACLA [16, 17]. Practical

calculations of specific systems yielded in several empirical

laws using different polynomial dependencies (see [22,23]

and references therein).

Comprehensive analysis of the problem of the undulator

tapering in the presence of diffraction effects has been per-

formed in [24,25]. It has been shown that the key element for

understanding the physics of the undulator tapering is given

by the model of the modulated electron beam which pro-

vides relevant interdependence of the problem parameters.

Finally, application of similarity techniques to the results of

numerical simulations led to the universal law of the undu-

lator tapering. In this paper we extend studies [24,25] to the

case of SASE FEL.

BASIC RELATIONS
We consider axisymmetric model of the electron beam. It

is assumed that transverse distribution function of the elec-

tron beam is Gaussian, so rms transverse size of matched

beam is σ =
√
ε β, where ε is rms beam emittance and β

is focusing beta-function. An important feature of the pa-

rameter space of short wavelength FELs is that the space

charge field does not influence significantly the amplifica-

tion process, and in the framework of the three-dimensional

theory the operation of the FEL amplifier is described by

the following parameters: the diffraction parameter B, the
energy spread parameter Λ̂2

T
, the betatron motion parameter

k̂β and detuning parameter Ĉ [9, 26]:

B = 2Γσ2ω/c , Ĉ = C/Γ ,

k̂β = 1/(βΓ) , Λ̂2
T = (σE/E)2/ρ2 , (1)

where Γ =
[
Iω2θ2s A2

JJ
/(IAc2γ2zγ)

]1/2
is the gain parameter,

ρ = cγ2zΓ/ω is the efficiency parameter, and C = 2π/λw −
ω/(2cγ2z ) is the detuning of the electron with the nominal
energy E0. Note that the efficiency parameter ρ entering
equations of three dimensional theory relates to the one-

dimensional parameter ρ1D as ρ1D = ρ/B1/3 [9, 27]. The

following notations are used here: I is the beam current,

ω = 2πc/λ is the frequency of the electromagnetic wave,
θs = K/γ, K is the rms undulator parameter, γ−2z = γ−2+θ2s ,
kw = 2π/λw is the undulator wavenumber, IA = 17 kA
is the Alfven current, AJJ = 1 for helical undulator and

AJJ = J0(K2/2(1 + K2)) − J1(K2/2(1 + K2)) for planar
undulator. J0 and J1 are the Bessel functions of the first
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kind. The energy spread is assumed to be Gaussian with

rms deviation σE.
In the following we consider the case of negligibly small

values of the betatron motion parameter k̂β and the energy
spread parameter Λ̂2

T
(i.e. the case of “cold” electron beam).

Under these assumptions the operation of the FEL amplifier

is described by the diffraction parameter B and the detuning

parameter Ĉ.
Equations, describing the motion of the particles in the

ponderomotive potential well of the electromagnetic wave

and the undulator, become simple when written down in the

normalized form (see, e.g. [9]):

dΨ
dẑ
= Ĉ + P̂,

dP̂
dẑ
= U cos(φU + Ψ) , (2)

where P̂ = (E − E0)/(ρE0), ẑ = Γz, and U and φU are the

amplitude and the phase of the effective potential. Deviation

of the electron energy is small in the exponential stage of

amplification, P̂ � 1, and process of the beam bunching in

phase Ψ lasts for a long distance, ẑ � 1. Situation changes

drastically when amplification process enters nonlinear stage

and deviation of the electron energy P̂ approaches to the

unity. The phase change on a scale of Δẑ � 1 becomes to be
fast, particles start to slip fast in phase Ψ which leads to the

reduction of the electron beam modulation, and the growth

of the radiation power is saturated.

Undulator tapering [1], i.e. adjustment of the detuning

according to the energy loss of electrons, Ĉ( ẑ) = −P̂( ẑ),
allows to keep synchronism of trapped electrons with elec-

tromagnetic wave.

UNIVERSAL TAPERING LAW
During amplification process the electron beam is modu-

lated periodically at the resonance wavelength. This mod-

ulation grows exponentially in the high gain linear regime,

and reaches a value about the unity near the saturation point.

Application of the undulator tapering allows to preserve

beam bunching at a long distance. Electron beam current

I (z, t) = I0[1 + ain cosω(z/vz − t)] is modulated with am-
plitude ain in this case. Radiation power of the modulated
beam is given by [28]:

W =
2π2I2

0
a2
in
σ2

cλλu

K2A2
JJ

1 + K2
f ( z̃) z̃ ,

f ( z̃) = arctan ( z̃/2) + z̃−1 ln
(

4

z̃2 + 4

)
. (3)

In the right-hand side of expression (3) we explicitly iso-

lated z-dependence of the radiation power with function
f ( z̃) of argument z̃ = 1/N where N = kσ2/z is Fresnel
number, and k = 2π/λ is wavenumber. Plot of the function
f ( z̃) is shown in Fig. 1. Asymptotes of the function f ( z̃)
are:

f ( z̃) → π/2 for z̃ � 1 (N � 1) ,
f ( z̃) = z̃/4 for z̃ � 1 (N � 1) (4)

for thin and wide electron beam asymptote, respectively.
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Figure 1: Function f (z) entering equation (3). Dashed line
shows the asymptote (4) for small values of z, f ( z̃) = z̃/4.
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Figure 2: Upper plot: the trapping efficiency Ktrap for the

globally optimized undulator (black curve) and the fitting

coefficient α−1tap of the global optimization entering Eq. (5)
(red curve). Lower plot: coefficients a (black line) and b
(red line) of the rational fit of the tapering law (6).

The detuning (undulator tapering) should follow the en-

ergy loss by particles given by (3) which suggests the fol-

lowing universal law [24,25]:

Ĉ = αtap ( ẑ− ẑ0)
[
arctan

(
1

2N

)
+ N ln

(
4N2

4N2 + 1

)]
, (5)

with Fresnel number N fitted by N = βtap/( ẑ − ẑ0). Undu-
lator tapering starts by two field gain length 2 × Lg before

the saturation point at z0 = zsat − 2 × Lg . Parameter βtap
is rather well approximated with the linear dependency on

diffraction parameter, βtap = 8.5 × B. Parameter αtap is
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Figure 3: Evolution along the undulator of the reduced ra-

diation power η̂ = W/(ρWbeam) (blue curve) and of the
detuning parameter Ĉ = C/Γ (red curve). Top and bottom
plots correspond to the seeded and SASE case, respectively.

Solid blue and green curve on the bottom curve correspond

to tapered and untapered case, respectively. Dashed green

line is radiation power of seeded untapered FEL. Diffraction

parameter is B = 10.

plotted in Fig. 2. It is a slow varying function of the diffrac-

tion parameter B, and scales approximately to B1/3.

Analysis of the expression (5) shows that it has quadratic

dependence in z for small values of z (limit of the wide
electron beam), and linear dependence in z for large values
of z (limit of the thin electron beam). It is natural to try a
fit with a rational function which satisfies both asymptotes.

The simplest rational fit is:

Ĉ =
a( ẑ − ẑ0)2

1 + b( ẑ − ẑ0)
. (6)

The coefficients a and b are the functions of the diffraction
parameter B, and are plotted in Fig. 2. Start of the undulator
tapering is set to the value z0 = zsat − 2Lg . Analysis per-

formed in [24,25] have shown that the fit of the tapering law

with the rational function also works well.

ANALYSIS OF THE TAPERING PROCESS
Seeded FEL
We proceed our paper with the analysis of the trapping

process. Top plot in Fig. 3 shows evolution of the average

radiation power of seeded FEL along the optimized tapered

undulator. The trapping efficiency Ktrap = P̂/Ĉ falls down

with the diffraction parameter B (see Fig. 2). This is natural
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Figure 4: Phase space distribution of electrons at different

stages of the trapping process. Diffraction parameter is B =
10. Plots from the top to the bottom correspond to ẑ = 23.5,
35.3, 39.2, 43.2, 49, 58.9, 68.7, and 78.5, respectively. Left

column represents seeded FEL amplifier. Right column

represents SASE FEL at the coordinate along the bunch

ŝ = ρωt = 100, see Figs. 5 and 6.

consequence of the diffraction effects discussed in earlier

publications (see, e.g. Ref. [9], Chapter 4). Indeed, FEL

radiation is not a plane wave. Transverse distribution of the

radiation field (FEL radiation mode [9, 29]) depends on the

value of the diffraction parameter B, and the field gradient
(or, amplitude of ponderomotive well) across the electron
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Figure 5: Phase space distribution of the particles along the

bunch (red dots), average loss of the electron energy (blue

line), and radiation power (green line) at different stages of

the trapping process in SASE FEL. Here diffraction parame-

ter is B = 10. Plots from the top to the bottom correspond

to ẑ = 23.5, 35.3, 39.2, and 43.2, respectively.

beam is more pronouncing for larger values of the diffraction

parameter B. In the latter case we obtain situation when
electrons located in the core of the electron beam are already

fully bunched while electrons at the edge of the beam are not

bunched yet (see phase space plot (a) in Fig. 4). As a result,

the number of electrons with similar positions on the energy-

phase plane falls down with the growth of the diffraction

parameter, as well as the trapping efficiency in the regime

of coherent deceleration. The trapping process is illustrated

with the phase space plots presented on Figs. 4-6 for the value

of the diffraction parameter B = 10. The particles in the core
of the beam are trapped most effectively. Nearly all particles

located at the edge of the electron beam leave the stability

region very soon. The trapping process lasts for a several

field gain lengths when the trapped particles become to be

isolated in the trapped energy band for which the undulator

tapering is optimized further. For the specific value of the

diffraction parameter B = 10 the trapping proces is not

finished even at three field gain lengths after saturation, and

non-trapped particles continue to populate low energy tail of

the energy distribution (see Fig. 7). There was an interesting

experimental observation at LCLS that energy distribution

of non-trapped particles is not uniform, but represent a kind
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Figure 6: Phase space distribution of the particles along the

bunch (red dots), average loss of the electron energy (blue

line), and radiation power (green line) in the deep tapering

regime. Diffraction parameter is B = 10. Plots from the

top to the bottom correspond to ẑ = 49, 58.9, 68.7, and 78.5,
respectively.

of energy bands [30–32]. Graphs presented in Fig. 4 give

a hint on the origin of energy bands which are formed by

non-trapped particles. This is the consequence of nonlinear

dynamics of electrons leaving the region of stability. Note

that a similar effect can be seen in the early one-dimensional

studies [7, 8].

Optimum Tapering of SASE FEL
The considerations on the strategy for the tapering opti-

mization of a SASE FEL is rather straightforward. Radia-

tion of SASE FEL consists of wavepackets (spikes). In the

exponential regime of amplifications wavepackets interact

strongly with the electron beam, and their group velocity

visibly differs from the velocity of light. In this case the slip-

page of the radiation with respect to the electron beam is by

several times less than kinematic slippage [9]. This feature

is illustrated with the upper plot in Fig. 5 which shows onset

of the nonlinear regime. We see that wavepackets are closely

connected with the modulations of the electron beam current.

When the amplification process enters nonlinear (tapering)

stage, the group velocity of the wavepackets approaches to

the velocity of light, and the relative slippage approaches to

the kinematic one. When a wavepacket advances such that
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Figure 7: Population of the particles in energy at different

stages of amplification. Diffraction parameter is B = 10.

Plots from the top to the bottom correspond to ẑ = 23.5, 35.3,
39.2, 43.2, 49, 58.9, 68.7, and 78.5, respectively. Left and

right columns represent seeded FEL amplifier and SASE

FEL, respectively.

it reaches the next area of the beam disturbed by another

wavepacket, we can easily predict that the trapping process

will be destroyed, since the phases of the beam bunching and

of the electromagnetic wave are uncorrelated in this case.

Typical scale for the destruction of the tapering regime is

coherence length, and the only physical mechanism we can

use is to decrease the group velocity of wavepackets. This
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Figure 8: Evolution along the undulator of the squared value

of the bunching factor for the FEL amplifier with optimized

undulator tapering. Dashed and solid line represent seeded

FEL amplifier and SASE FEL, respectively. Diffraction

parameter is B = 10.

happens optimally when we trap maximum of the particles

in the regime of coherent deceleration, and force these parti-

cles to interact as strong as possible with the electron beam.

We see that this strategy is exactly the same as we used for

optimization of seeded FEL. Global numerical optimization

confirms these simple physical considerations. Conditions

of the optimum tapering are the same as it has been described

above for the seeded case. Start of the tapering is by two

field gain lengths before the saturation. Parameter βtap is
the same, 8.5×B. The only difference is the reduction of the
parameter αtap by 20% which is natural if one remember

statistical nature of the wavepackets. As a result, optimum

detuning is just 20% below the optimum seeded case.

We illustrate operation of SASE FEL with simulations

with three-dimensional, time-dependent FEL simulation

code FAST [33]. Bottom plot in Fig. 3 shows evolution of

the average radiation power of SASE FEL along optimized

tapered undulator. Details of the phase space distributions

are traced with Figs. 4 - 6. Initially behavior of the process

is pretty close to that of the seeded case. Initial values of

the beam bunching is comparable with the seeded case (see

Fig. 8). The rate of the energy growth is also comparable

with the seeded case. The feature of the "energy bands"

remains clearly visible in the case of SASE FEL as well

(see Figs. 7 - 6). It is interesting observation that plots in

Figs. 6 corresponding to the well trapped particles qualita-

tively correspond to experimental data from LCLS taken

with transverse deflecting cavity [30–32].

The beam bunching gradually drop down when wavepack-

ets travel along the bunch. As we expected, the amplification

process is almost abruptly stopped when the relative slippage

exceeded the coherence length. However, increase of the

total radiation power with respect to the saturation power is

about factor of 12.
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Figure 9: Fundamental harmonic: evolution of the radiation

power and brilliance (top plot) and of coherence time and

degree of transverse coherence (bottom plot) along the un-

dulator for untapered (solid curves) and optimized tapered

case (dashed curves).

PROPERTIES OF THE SASE RADIATION:
TAPERED VERSUS UNTAPERED CASE
We perform comparative analysis of the radiation prop-

erties tapered and untapered case for the parameters of the

SASE3 undulator of the European XFEL [34]. Undulator

period is 6.8 cm, electron energy is 14 GeV, radiation wave-

length is 1.55 nm. Undulator consists of 21 modules, each

is 5 meters long with 1.1 m long intersections between mod-

ules. Parameters of the electron beam correspond to 0.25

nC case of the baseline parameters of the electron beam:

emittance 0.6 mm-mrad, rms energy spread 2.5 MeV, peak

beam current 5 kA [35]. Average focusing beta function is

equal to 15 m. The value of the diffraction parameter is B =

1.1 which is close to the optimum conditions for reaching the

maximum value of the degree of transverse coherence [36].

Two cases were simulated: untapered undulator, and the

undulator optimized for maximum FEL efficiency as it has

been described in previous sections [25].

Plots in Fig. 9 show evolution along the undulator of the

radiation power, the degree of transverse coherence, the

coherence time, and the brilliance for the fundamental har-

monic. For the case of untapered undulator the coherence

time and the degree of transverse coherence reach maximum

values in the end of the linear regime. Maximum brilliance

of the radiation is achieved in the very beginning of the

nonlinear regime which is also referred as the saturation

point [36]. In the case under study the saturation occurs at

the undulator length of 53 m. Parameters of the radiation

at the saturation point are: the radiation power is 108 GW,

the coherence time is 1.2 fs, the degree of transverse co-

herence is 0.86, and the brilliance of the radiation is equal

to 3.8 × 1022 photons/sec/mm2/rad2/0.1% bandwidth. The

radiation characteristics plotted in Fig. 9 are normalized to

the corresponding values at the saturation point.

General observations for the tapered regime are as follows.

Radiation power grows faster than in the untapered tapered

case. The coherence time and the degree of transverse coher-

ence degrade, but a bit less intensive than in the untapered

case. Brilliance of the radiation for the tapered case satu-

rates at the undulator length of 80 m, and then drops down

gradually. For this specific practical example the benefit

of the tapered case against untapered case in terms of the

radiation brilliance is factor of 3, and it is mainly defined by

the corresponding increase of the radiation power. Coher-

ence properties of the radiation in the point of the maximum

brilliance of the tapered case are worse than those of the

untapered SASE FEL in the saturation point: 0.86 to 0.68

for the degree of transverse coherence, and 1 to 0.86 in terms

of the coherence time.
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