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Abstract
We show that radiation pulses from an X-ray Free-

Electron Laser (XFEL) with a planar undulator, which are
mainly polarized in the horizontal direction, exhibit a sup-
pression of the vertical polarization component of the power
at least by a factor λ2

w/(4πLg )2, where λw is the length of
the undulator period and Lg is the FEL field gain length. We
illustrate this fact by examining the XFEL operation under
the steady state assumption. In our calculations we consid-
ered only resonance terms: in fact, non resonance terms are
suppressed by a factor λ3

w/(4πLg )3 and can be neglected.
While finding a situation for making quantitative compari-
son between analytical and experimental results may not be
straightforward, the qualitative aspects of the suppression
of the vertical polarization rate at XFELs should be easy to
observe. We remark that our exact results can potentially
be useful to developers of new generation FEL codes for
cross-checking their results.

INTRODUCTION
In this paper we quantify the small component of the elec-

tric field in the vertical direction in radiation pulses produced
by an XFEL with horizontal planar undulator. In particular,
we show that for a typical XFEL setup the horizontally po-
larized component of radiation is greatly dominant, and that
only less that one part in a million of the total intensity is
polarized in the vertical plane.
The study of XFEL polarization characteristics is obvi-

ously deeply related to the problem of electromagnetic wave
amplification in XFEL, which refers to a particular class
of self-consistent problems. It can be separated into two
parts: the solution of the dynamical problem, i.e. finding
the motion of the electrons in the beam under the action of
given electromagnetic fields, and the solution of the elec-
trodynamic problem, i.e. finding the electromagnetic fields
generated by a given contribution of charge and currents.
The problem is closed by simultaneous solution of the field
equations and of the equations of motion.

Let us consider the electrodynamic problemmore in detail.
The equation for the electric field ~E follows the inhomoge-
neous wave equation

c2∇2 ~E −
∂2 ~E
∂t2 = 4πc2~∇ρ + 4π

∂~j
∂t

. (1)

Once the charge and current densities ρ and ~j are specified
as a function of time and position, this equation allows one
to calculate the electric field ~E at each point of space and

time [1]. The current density source provides the main con-
tribution to the radiation field in an FEL amplifier, and the
contribution of the charge density source to the amplification
process is negligibly small. This fact is commonly known
and accepted in the FEL community.1
Due to linearity, without the gradient term the solution

of Eq. (1) exhibits the property that the radiation field ~E
points in the same direction of the current density ~j. An
important limitation of such approximation arises when we
need to quantify the linear vertical field generated in the case
of an XFEL with planar undulator. In the case ~j points in
the horizontal direction (for a horizontal planar undulator),
according to Eq. (1), which is exact, only the charge term is
responsible for a vertically polarized component of the field:
if it is neglected, one cannot quantify the linear vertical field
anymore.

Similar to the process of harmonic generation, the process
of generation of the vertically polarized field component can
be considered as a purely electrodynamic one. In fact, the
vertically polarized field component is driven by the charge
source, but the bunching contribution due to the interaction
of the electron beam with the radiation generated by such
source can be neglected. This leads to important simpli-
fications. In fact, in order to perform calculations of the
radiation including the vertically polarization component
one can proceed first by solving the self-consistent problem
with the current source only. This can either be done in an
approximated way using an analytical model for the FEL
process or, more thoroughly, exploiting any existing FEL
code. Subsequently, the solution to the self-consistent prob-
lem can be used to calculate the first harmonic contents of
the electron beam density distribution. These contents enter
as known sources in our electrodynamic process, that is Eq.
(1). Solution of that equation accounting for these sources
gives the desired polarization characteristics.
Approximations particularly advantageous for our theo-

retical analysis include the modeling of the electron beam
density as uniform, and the introduction of a monochromatic
seed signal. Realistic conditions satisfying these assump-
tions are the use of a sufficiently long electron bunch with a
longitudinal stepped profile and the application of a scheme
in the SASE mode of operation for narrowing down the
radiation bandwidth. In the framework of this model it be-
comes possible to describe analytically all the polarization
properties of the radiation from an XFEL.

1 However, we have been unable to find a proof of this fact in literature,
except book [2] and review [3], which are only the publications, to the
authors’ knowledge, dealing with this issue.
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The simplicity of our model offers the opportunity for
an almost completely analytical description in the case of
an XFEL in the linear regime. A complete description of
the operation of an XFEL can be performed only with time-
dependent numerical simulation codes. Application of the
numerical calculations allows one to describe the most gen-
eral situation, including arbitrary electron beam quality and
nonlinear effects. Finding an analytical solution is always
fruitful for testing numerical simulation codes. Up to now,
in conventional FEL codes the contribution of the the charge
source is assumed to be negligible. However, the charge term
alone is responsible for the vertically polarized radiation
component, which is our subject of interest. Our analytical
results for the high-gain linear regime are expected to serve
as a primary standard for testing future FEL codes upgrades.
Here we will report only the main results of our calcula-

tions. Details can be found in [4].

RESONANCE APPROXIMATION
Paraxial Maxwell’s equations in the space-frequency do-

main can be used to describe radiation from ultra-relativistic
electrons (see e.g. [5]). We call the Fourier transform of the
real electric field in the time domain ~̄E⊥(z,~r⊥, ω), where
~r⊥ = x~ex + y~ey identifies a point on a transverse plane at
longitudinal position z, ~ex and ~ey being unit vectors in the
transverse x and y directions. Here the frequency ω is re-
lated to the wavelength λ by ω = 2πc/λ, c being the speed
of light in vacuum. From the paraxial approximation follows
that the electric field envelope ~̃E⊥ = ~̄E⊥ exp [−iωz/c] does
not vary much along z on the scale of the reduced wavelength
λ/(2π). As a result, it can be shown that the following field
equation holds:

(
∇2
⊥ +

2iω
c

∂

∂z

)
~̃E⊥(z,~r⊥, ω) =

−4π exp
[
i
∫ z

0
dz̄

ω

2cγ2
z ( z̄)

] [
iω
c2 ~vo⊥ −

~∇⊥

]

× ρ̃(z,~r⊥ − ~ro⊥(z), ω) , (2)

where ~ro⊥(z), so (z) and vo are the transverse position, the
curvilinear abscissa and the velocity of a reference elec-
tron with nominal Lorentz factor γo that is injected on
axis with no deflection and is guided by the planar undu-
lator field. Such electron follows a trajectory specified by
~ro⊥(z) = rox~ex+roy~ey with rox (z) = K/(γo kw ) cos(kw z)
and roy (z) = 0. Here K is the undulator parameter defined
in terms of the maximum magnetic field and kw = 2π/λw ,
λw being the undulator period. The corresponding veloc-
ity is described by ~vo⊥(z) = vox~ex + voy~ey . Moreover,

γz (z) = 1/
√

1 − voz (z)2/c2 and voz (z) =
√
v2
o − vo⊥(z)2.

Finally, ρ̃ is related to the Fourier transform of the macro-
scopic charge density, ρ̄, by

ρ̄ = ρ̃(z,~r⊥ − ~ro⊥(z), ω) exp
[
iω

so (z)
vo

]
, (3)

so being the curvilinear abscissa along the trajectory.
With the aid of the appropriate Green’s function and using

the far-zone approximation a solution of Eq. (2) can be found
to be:

~̃E⊥ = −
iω
cz

∫
d~l

∫ ∞

−∞

dz′ ρ̃(z′,~l, ω)exp
[
iΦT (z′,~l, ω)

]

×

[(
K
γ

sin
(
kw z′

)
+ θx

)
~ex + θy~ey

]
, (4)

where

ΦT = ω

{
z′

2γ2c

[
1 +

K2

2
+ γ2

(
θ2
x + θ

2
y

)]

−
K2

8γ2kwc
sin (2kw z′) −

Kθx
γkwc

cos (kw z′)
}

+ω

{
Kθx
kwγc

−
1
c

(θx lx + θy ly ) + (θ2
x + θ

2
y )

z
2c

}
.(5)

Here θx and θy indicate the observation angles x/z and y/z.
Moreover, since in Eq. (4) we introduced explicitly the tra-
jectory inside the undulator, we need to limit the integration
in dz′ to a proper range within the undulator. We assume
that this is done by introducing a function of z′ as a factor to
ρ̃, which becomes zero outside properly defined range, thus
effectively limiting the integration range in z′.
In this article we are interested in considering fields and

electromagnetic sources originating from an FEL process.
Imposing resonance condition between electric field and
reference particle, the self-consistent FEL process automati-
cally restricts the amplification of radiation at frequencies
around the first harmonic ω1o = 2kwcγ̄2

z and at emission
angles θ2

max � 1/γ̄2
z , where γ̄2

z = γ
2/(1 + K2/2). Our focus

onto FEL emission also explains the definition in Eq. (3). In
fact, introduction of ρ̃ is useful when ρ̃ is a slowly varying
function of z on the wavelength scale. If the charge density
distribution under study originates from an FEL process a
stronger condition is satisfied, namely ρ̃ is slowly varying
on the scale of the undulator period λw and, as the FEL
pulse itself, is peaked around the fundamental ω1o . The
words ‘peaked’ or ‘around’ the fundamental mean that the
bandwidth is ∆ω/ω1o � 1. We quantify ‘how near’ the
frequency ω is to ω1o introducing the detuning parameter
C = (∆ω/ω1o )kw , with ∆ω = ω − ω1o . The detuning pa-
rameter C should indeed be considered as a function of z,
C = C(z). All other dependencies on z, for example due to
the fact that the energy of particles actually deviates from γ
and actually decreases during the FEL process, is accounted
for in ρ̃. We seek to calculate the first harmonic contribution
at frequencies ω around ω1o , ~̃E⊥1, by making use of the
well-known Anger-Jacobi expansion. Invoking the FEL pro-
cess allows to take the limit for C � kw and θ2

max � 1/γ̄2
z .

Keeping the dominant terms only we obtain

~̃E⊥1 =
ω1o
cz

exp
[
i
ω1o
2c

z(θ2
x + θ

2
y )

]
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×

[
K
2γ

AJJ~ex +
2Kγ

2 + K2 BJJθxθy~ey

]

×

∫ ∞

−∞

dlx

∫ ∞

−∞

dly

∫ ∞

−∞

dz′

× exp
[
−i
ω1o

c

(
θx lx + θy ly

)]

× exp
[
i
ω1o
2c

(
θ2
x + θ

2
y

)
z′

]
ρ̃(z′,~l, ω) exp[iCz′], (6)

where we have defined

AJJ = J0

(
K2

2(2 + K2)

)
− J1

(
K2

2(2 + K2)

)
, (7)

BJJ = J0

(
K2

2(2 + K2)

)
+ J1

(
K2

2(2 + K2)

)
, (8)

and Jp (·) indicates the Bessel function of the first kind of or-
der p. Note that usually computer codes present the product
ρ̃(z′,~l, ω) exp[iCz′] combined in a single quantity tipically
known as the complex amplitude of the electron beam mod-
ulation with respect to the phase ψ = kw z′ + (ω/c)z′ − ωt.
Regarding such product as a given function allows one not
to bother about a particular presentation of the beam mod-
ulation. Eq. (6) is our most general result, and is valid
independently of the model chosen for the current density
and the modulation. It can be used together with FEL simu-
lation codes for detailed calculations of the evolution of the
vertically polarization contribution to the FEL radiation.

In the case of an FEL, due to the presence of a maximum
angle θmax related with the self-consistent process, the angle-
integrated correction to the power from the horizontally
polarized radiation component only includes the leading
resonant term, and Eq. (6) can always be used to calculate
such correction at the first harmonic.

ANALYTICAL CASES
We now restrict our attention to the steady-state model

of an FEL amplifier. Because of the steady state assump-
tion we restrict our attention to one single frequency. This
means that, in the time domain, the electric field enve-
lope ~̃E⊥1 must correspond to a real electric field at a cer-
tain frequency ω̄ = ω1o (1 + Ckw ) given by ~E(z,~r⊥, t) =
~E⊥1(z,~r⊥) exp[iω̄(z/c − t)]+C.C., where the symbol C.C.
indicates complex conjugation.
The power fractions into the two modes of polarization

are found to be

W(σ,π) =
c

2π

∫ ∞

−∞

dx
∫ ∞

−∞

dy |E⊥1(x,y) (z, x, y) |2 , (9)

where

~̃E⊥1(z,~r⊥, ω) = 2π~E⊥1(z,~r⊥)δ(ω − ω̄) . (10)

In order to calculate W(σ,π) we make use of Eq. (9). The
expression for E⊥1(x,y) can be found in terms of ~̃E⊥1 with

the help of Eq. (10). Finally, one needs to calculate ~̃E⊥1,
which can be done using Eq. (6).

Under the assumption of a one-dimensional steady state
FEL amplifier we write the expression for the slowly-varying
amplitude of the charge density as

ρ̃(z,~r⊥, ω) =
jo (~r⊥)
vz

2πa(z)δ(ω − ω0) , (11)

where we defined the current density

jo (~r⊥) = −
Io

2πσ2 exp
(
−

r2
⊥

2σ2

)
, (12)

and where we dropped the term in δ(ω + ω̄) passing to
complex notation, as done before with the field.

We will show that, typically, in the case of an XFEL with
a horizontal planar undulator, only less that one part in a
million of the total power at the first harmonic is polarized in
the vertical direction. For some experiments even such small
fraction of the π mode is of importance. The contribution
of the second harmonic can be calculated using results in
[6] and was studied in [4]. There it was found that the
contribution from the even harmonics can be completely
disregarded when the XFEL operates in linear regime. At
saturation, the contribution from the second harmonic can be
comparable with the first harmonic in the case when X-ray
optics harmonic separation is absent.

High-gain Linear Regime
We first model the case of an FEL amplifier in the high-

gain linear regime. We proceed approximating the detuning
parameter C as constant along the undulator. Let us restrict,
for simplicity, to the case of perfect resonance for C = 0.
This means that from now on ω̄ = ω1o . The high-gain
asymptote of the one-dimensional steady-state theory of
FEL amplifiers yields

a(z) = a f exp[(
√

3 + i)z/(2Lg )] , (13)

where we set the exit of the undulator (in the linear regime)
at z = 0 and a f = constant is the modulation level at z = 0.
Here Lg is the field gain length. The number of undulator
periods in the field gain length Lg is just Nw = (4πρ1D)−1,
where the FEL parameter ρ1D is defined in [7]. Based on
Eq. (6) we obtain(

Wσ

Wπ

)
= Wo

(
AJJ

2ρ−1
1DGσ (N )

BJJ
2ρ1DGπ (N )

)
, (14)

where

Gσ (N ) =
1

2
√

3
exp[(1 − i

√
3)N] {π

+π exp
[
2i
√

3N
]
− i exp

[
2i
√

3N
]

Ei
(
N (−1 − i

√
3)

)
+iEi

(
iN (i +

√
3)

)}
(15)
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Figure 1: Illustration of the behavior of f (K ) (left) and
w(N ) (right).

Gπ (N ) =
1
6

{
3
N
−

(
−3i +

√
3
)

exp[(1 + i
√

3)N]

×
[
π − iEi

(
(−1 − i

√
3)N

)]
−

(
3i +
√

3
)

× exp[(1 − i
√

3)N]
[
π + iEi

(
i(i +

√
3)N

)] }
(16)

and

Wo = Wba2
f

(
Io
γIA

) (
K2

2 + K2

)
(17)

where Wb = mec2γIo/e is the total power of the electron
beam and N = ω1oσ

2/(cLw ) is the diffraction parameter
(or Fresnel number) with Lw = Lg in our case.

The ratio between the fractions radiated in the two modes
of polarization is therefore conveniently expressed as a func-
tion of three separate factors:

Wπ

Wσ
= f (K )g(Nw )w(N ) (18)

with

f (K ) =
B2
JJ

A2
JJ

, g(ρ1D ) = ρ2
1D,w(N ) =

Gπ (N )
Gσ (N )

. (19)

The first factor, f (K ), is only a function of the undulator
K parameter and is plotted in Fig. 1. The second factor,
g(ρ1D ) scales as the inverse number of undulator periods
squared, and is a signature of the fact that the gradient term
in the equation for the electric field scales as the inverse
number of undulator periods. The third factor, w(N ), is
only a function of the diffraction parameter that is, once the

wavelength and the undulator length are fixed, a function of
the electron beam size only. It is also plotted in Fig. 1. It
is unity for values of the diffraction parameter around unity,
but it quickly decreases for larger values of N . The power
fraction radiated in the π mode increases drastically with the
photon energy, partly due to a larger number of undulator
period per field gain-length, but mainly because of a larger
diffraction parameter.
As an example we consider a 250 pC electron beam at

a photon energy of about 9 keV for the SASE2 line of the
European XFEL, at the electron energy of 17.5 GeV. Here
K ' 3.6, the peak current is about 5 kA, and the rms sizes
of the electron beam in the horizontal and vertical directions
are about σx ' 15 µm and σy ' 18 µm respectively. For
our purposes of exemplification we consider a round beam
with σ = 16µm. The peak current density can then be
estimated as I0/(2πσ2). Finally, the undulator period is
λw = 40 mm. From these numbers we obtain the parameter
ρ1D ' 8 · 10−4. Plugging these numbers in Eq. (18) and
remembering the definition in Eq. (19)we obtain f (K ) '
2.5, g(ρ1D ) ' 6.4 · 10−7, N ' 3 and w(N ) ' 0.072, so that
the overall ratio Wπ/Wσ ' 1.13 · 10−7.

Constant Density Modulation
In analogy with the previous paragraph, we now proceed

to study the case of a constant density modulation along an
undulator of fixed length Lw , imitating the behavior of an
FEL at saturation. We can still set C(z) = 0. At variance
with the previous model we now write

ρ̃(z,~l) = jo
(
~l
)

2πa f HLg (z)δ(ω − ω1o ) . (20)

Here a f = const, HLw (z) = 1 for z in the range
(−Lw/2, Lw/2) and zero otherwise, with Lw the undula-
tor length, and jo is defined as in Eq. (12). One finds

(
Wσ

Wπ

)
= Wo

(
AJJ

2(4πNw )Fσ (N )
BJJ

2(4πNw )−1Fπ (N )

)
, (21)

where

Fσ (N ) = arctan
(

1
2N

)
+ N ln

(
4N2

4N2 + 1

)
, (22)

Fπ (N ) =
1

N (1 + 4N2)
, (23)

and where parameters N and Wo are defined above.
Similarly as before, the ratio between the two fractions

radiated into the two modes of polarization is conveniently
expressed as a function of three separate factors:

Wπ

Wσ
= f (K )g(Nw )h(N ) (24)

with
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Figure 2: Illustration of the behavior of h(N ).

f (K ) =
B2
JJ

A2
JJ

, g(Nw ) =
1

(4πNw )2 , h(N ) =
Fπ (N )
Fσ (N )

. (25)

The function f has been defined in the previous paragraph.
Concerning the second factor g, we have an expressionwhich
is similar to that in Eq. (19). The only difference is that here
we replaced ρ1D with (4πNw )−1, with Nw the number of
undulator periods in the undulator. The number of undulator
periods in a field gain length is just Nw = (4πρ1D)−1, and
therefore the second factor in Eq. (24) just amounts to ρ2

1D
for an undulator length Lw = Lg , Lg being, as before, the
field gain length. By setting the undulator length equal to the
field gain length the two models can be directly compared
by studying w(N ) as defined in Eq. (19) and h(N ) defined
in Eq. (25). We plot h(N ) explicitly in Fig. 2. As one can
see it differs from Fig. 1, due to the different model used.

Considering the same example made in the previous para-
graph we find again f (K ) ' 2.5, g(ρ1D ) ' 6.4 · 10−7, N '

3. Plugging the value for N into Eq. (25) we obtain h(N ) '
0.097, so that the overall ratio Wπ/Wσ ' 1.5 · 10−7.

The case of a constant density modulation treated in this
paragraph not only pertains an FEL at saturation, but also
the case of spontaneous emission in an undulator. A major
difference compared to the FEL case is that the FEL process
limits the detuning to values C � kw and the angle of
interest up to θmax. Such limitations are not automatically
present in the case of spontaneous emission. However, if
we limit the acceptance angle of the spontaneous emission
to θmax and we assume the undulator length of order of the
FEL gain length, we expect the same ratio of the fractions
radiated in the two modes of polarization found in Eq. (24).
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