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Abstract
The measured spectrum of the soft X-ray self-seeding at

the LCLS has a pedestal-like distribution around the seeded
frequency, which limits the spectral purity and seeding ap-
plications without a post-undulator monochromator. In this
paper, we study the origins of the pedestals and focus on
the contributions of microbunching instability prior to the
FEL undulator. We show that both energy and density mod-
ulations can induce sidebands in a seeded FEL. Theory and
simulations are used to analyze the sideband content relative
to the seeding signal. The results place a tight constraint on
the longitudinal phase space uniformity for a seeded FEL.

INTRODUCTION
Many efforts have been devoted to improve the longitudi-

nal coherence and spectral purity of the X-ray free-electron
lasers (FELs) since the unequivocal success of existing fa-
cilities which are based on the self-amplified spontaneous
emission (SASE) [1, 2]. While the relative bandwidth of
SASE FELs are limited to at least 10−3 or larger, one can
decrease the output bandwidth and increase the longitudi-
nal coherence by initiating the FEL process with a coherent
seed [3–6], or by imprinting the electron beam with a co-
herent density modulation (bunching) at the wavelength of
interest [7–10]. Under ideal circumstances (high-quality
seed of sufficient power and uniform electron beam, etc.),
one can obtain completely coherent, high-powerX-ray pulses
that approach Fourier limit.

However, imperfections of the electron beam or of the seed
will reduce the quality of the seeded FEL output [11–14].
In the measurement of self-seeded soft X-ray radiation spec-
trum at the Linac Coherent Light Source (LCLS) [6], there
is often a pedestal-like distribution around the seeded fre-
quency. In the absence of a post-undulator monochromator,
this contamination limits the spectral purity andmay degrade
certain user applications. Further studies have ruled out the
possibility that the pedestal-like distributions in the spectra
come from the spectrometer noise or the monochromator
optics. Microbunching instability growth of the electron
beam prior to the undulator, mostly induced by the longitu-
dinal space charge during the long-distance acceleration and
drift sections [15, 16] and directly observed at the LCLS
recently [17], is identified as the main source for these spec-
tral pedestals. In this paper, we show that both energy and
density modulations can induce sidebands in a seeded FEL.
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Theory and simulations are used to analyze the sideband
content relative to the seeding signal. The results place a
tight constraint on the longitudinal phase space uniformity
for a seeded FEL.

THEORETICAL ANALYSIS
To understand the basic physics of the pedestals, we con-

sider a two-frequency system: the seed and the sideband.
The FEL is seeded by a monochromatic radiation whose
frequency is at or near the natural FEL resonant frequency
ω1 and the electron beam initially has a longitudinal long-
wavelength modulation at frequency ωs . We describe the
longitudinal phase space of the electron beam with the elec-
tron ponderomotive phase θ ≡ (k1 + ku )z − ω1t and nor-
malized energy deviation from resonance η ≡ (γ − γ0)/γ0,
where k1(= ω1/c) and ku are the wave numbers of the radia-
tion and undulator. We will find the following dimensionless
variables to be useful in the analysis:

ẑ ≡ 2ku ρz , (1)

η̂ ≡
η

ρ
, (2)

aν ≡
eK[J J]

8γ2
0mc2ku ρ2

Eν , (3)

where the normalized frequency ν = 1 + ∆ν ≡ ω/ω1 and
ν = 1 is the resonant frequency. K is the normalized field of
the undulator and [J J] is the Bessel function factor. With
these dimensionless variables, the pendulum equations of
the two-frequency system can be written as

dθ
dẑ
= η̂ , (4)

dη̂
dẑ
= a1eiθ + aseiνθ + c.c. , (5)

da1
dẑ
= −b1 , (6)

das

dẑ
+ i∆νas = −bs , (7)

with the bunching parameters at the seed and the sideband
frequency

b1 ≡ 〈e−iθ〉 , (8)
bs ≡ 〈e−iνθ〉 . (9)

The subscript "1" denotes the variables of the seed and "s"
the sideband, respectively. We also introduce the collective
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momentum as

p1 ≡ 〈η̂e−iθ〉 , (10)
ps ≡ 〈η̂e−iνθ〉 . (11)

Initial Energy Modulation
Let us first consider an initial beam energy modulation:

A(s) = A0 cos(ks s) = ∆γγ cos(ks s). Using the scaled en-
ergy variable, we have

η̂0 =
Â
2

ei∆νθ + complex conjugate , (12)

where the normalized modulation amplitude Â = A0/ρ and
ks = ωs/c is the wave number of the modulation.
With the assumptions that |as | � |a1 |,|bs | � |b1 | and
|ps | � |p1 |, we can obtain the equations of the field ampli-
tudes as

d3a1

dẑ3 ≈ ia1 , (13)

d3as

dẑ3 + i∆ν
d2as

dẑ2 ≈ iνas + ν
2 Âp1 . (14)

Eq. (13) is the FEL cubic equation with the solution as

a1( ẑ) =
3∑

l=1
Dle−iµl ẑ , (15)

where D1,2,3 are the coefficients determined by the initial
conditions and µ1,2,3 are the roots of the cubic equation

µ1 = 1, µ2 =
−1 −

√
3i

2
, µ3 =

−1 +
√

3i
2

. (16)

If we consider the high-gain regime (ẑ � 1), a1( ẑ) takes
the simple form of

a1( ẑ) = D3e−iµ3 ẑ . (17)

Equation (14) is an inhomogeneous ordinary differential
equation of as . If we assume |∆ν | < ρ (i.e., the sideband fre-
quency shift is small compared to the FEL gain bandwidth),
the sideband equation is simplified to

d3as

dẑ3 ≈ ias + i ÂD3µ
2
3e−iµ3 ẑ . (18)

The solution for the inhomogeneous equation in the high-
gain regime with as (0) = 0 is

as ( ẑ) = −
i ÂD3

3
ẑe−iµ3 ẑ = −

i Â
3

ẑa1 . (19)

Thus the power ratio between the sideband and the seed
radiation along the undulator is

Ps ( ẑ)
P1( ẑ)

=
Â2

9
ẑ2 =

(2ku ρz)2

9
A2

0
ρ2 . (20)

Eq. (20) applies to either lower or upper sideband with a
frequency shift much less than the FEL gain bandwidth. The
full treatment of this problem, valid for an arbitrary sideband
frequency and also at FEL start-up, has been worked out by
Lindberg [18].

We note that the ratio of the sideband power vs. the seed
power grows quadratically with z and A0. This can be under-
stood qualitatively as follows. The energy modulation gen-
erates periodic local energy chirp along the electron beam
h(s) = h0 cos(ks s). Together with the undulator R56, the
seed frequency or phase φ will be modulated according to

dφ(s)
ds

∼ h(s)R56k1 = h(s)2ku z . (21)

This phase modulation generates two lowest sidebands that
have field amplitude proportional to h0 (A0) and z. If we
take the seeding saturation at 2ku ρz = 9, Eq. (20) stated
that A0 < 1

3 ρ in order for the sideband to not exceed the
seed power at saturation. Using the LCLS soft x-ray self-
seeding parameters given in Table 1, this leads to A0<1MeV
and is a very stringent requirement on the residual energy
modulation at the undulator entrance.

Finally the single-frequency sideband analysis can be gen-
eralized to broadband sidebands driven by microbunching
instability as

Ps ( ẑ)
P1( ẑ)

=
Â2

9
ẑ2 =

(2ku ρz)2

9

∫ ∆s

0

A(s)2

ρ2
ds
∆s

. (22)

Here A(s) is the energy centroid along the bunch coordinate
s, and ∆s is the bunch length of a flattop current profile.

Initial Density Modulation
The above analysis can be applied in a straightforward

manner to modulations in current. Let us introduce an initial
bunching parameter at the sideband frequency ωs = ∆νω1:

b0 = 〈e−i∆νθ〉 . (23)

The sideband field equation for ∆ν = ωs/ω1 < ρ becomes

d3as

dẑ3 ≈ iνas + iνa1b0 . (24)

Similar to Eq. (20), the power ratio between the sideband
and the seeding signal is

Ps ( ẑ)
P1( ẑ)

=
b2

0
9

ẑ2 =
(2ku ρz)2

9
b2

0 , (25)

which also grows quadratically with the initial density mod-
ulation amplitude and the undulator length.
Combining Eqs. (14) and (24), we obtain the sideband

driven by both energy and density modulations (the terms
with Â and b0, respectively). Nevertheless, the typical resid-
ual density modulation is much smaller than the residual
energy modulation (in units of ρ). For the microbunching
instability, density and energy modulations are 90◦ out of
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phase. In this case, the existence of the density modula-
tion increases the lower sideband at the expense of upper
sideband power and keeps the total sideband content approx-
imately constant. Thus, the density modulation modifies the
spectral pedestal shape without increasing the total spectral
energy in the pedestals.

1-D SIMULATION
To verify the previous analytical considerations, we have

numerically solved the time-dependent 1-D FEL equations
for a number of initial modulation conditions to study the
growth of the sideband power. Here we use the parameters
of the soft X-ray self-seeding FEL experiment settings at
the LCLS in Table 1. In the simulation, the electron beam is
ideal with uniform current distribution and vanishing slice
energy spread. The seed power distribution is also uniform.
The energy modulations are added to the electron beam
with cosine form with various periods and amplitudes. The
modulation wavelength is 2∼10 µm, which is the range of the
microbunching instability observed in the experiment [17].
The modulation amplitude ranges from 0.1MeV to 0.6MeV,
and the corresponding Â is within 0.03 to 0.2.

Table 1: Simulation Parameters in 1-D FEL Code

Parameter Value Unit
Beam energy E 3.48 GeV
Slice energy spread 0 MeV
Normalized emittance εN 0.9 µm
Current I 1.4 kA
Average β 30 m
Undulator period λu 3 cm
FEL parameter ρ 8.6 × 10−4

Gain length LG 1.6 m
Seeding wavelength λr 2.29 nm
Seeding power 20 kW
Energy modulation wavelength 2-10 µm
Energy modulation amplitude 0.1-0.6 MeV

The total field amplitude a and the bunching factor at the
seed frequency b1 for different energy modulation ampli-
tudes are given in Fig. 1. The FEL reaches saturation around
ẑ = 9. The total power of the FELs, which is proportional to
a2, is maintained while we increase the energy modulation
amplitude. However, the bunching factor b1 is reduced near
the saturation at large modulation amplitude.

The FEL spectra along the undulator are shown in Fig. 2
to illustrate the growth of the sideband power. The spectra
are normalized by the power of the seed (main peak), and the
spectral unit is photon energy (∆E = ~ωs). There are two
sideband peaks near the seed and their power ratios increase
along the undulator. The difference between the lower and
upper sideband peaks is due to the shape of the gain curve
in FELs. The lower sideband has larger gain. It is also noted
that when the first-order sideband becomes large enough, the
second-order one will appear with larger energy offset. Here
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Figure 1: The total field amplitude a and bunching factor b1
along the undulator with various energy modulation ampli-
tude Â.

we only consider the first-order sideband as the second-order
are always very small in our cases of interest.
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Figure 2: The spectra along the undulator length to illustrate
the growth of the sideband power. The spectra are normal-
ized by the power of the seed. The modulation wavelength
is 8 µm and amplitude is Â = 0.13.

First we study the energy offset of the sideband peaks to
the seed, as shown in Fig. 3. The energy offset of the two
sideband peaks are the same and proportional to the inverse
of the modulation wavelength. Simulation results show that
the energy offset is independent of the modulation amplitude
and undulator length.
To get the growth rate of the sideband power, we plot

the power ratios of the lower sideband to the seed along
the undulator for different modulation amplitudes in Fig. 4.
The theoretical analysis predicts that the sideband power
ratio grows quadratically with ẑ and Â (see Eq. 20) in the
high-gain regime. We fit the simulation results at ẑ > 1 in
Fig. 4 with second-order expressions of Â and ẑ. The fitting
coefficients of the curves are all around 1

9 as predicted in the
theory, which verifies the previous analysis.
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Figure 3: The energy offset of the sideband peaks to the seed
versus the inverse of the modulation wavelength.
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(ẑ
)/
P
1
(ẑ
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Figure 4: The ratio of the lower sideband to the seed along
the undulator for different modulation amplitude.

3D GENESIS SIMULATIONS

3D Genesis [19] simulations were also performed to vali-
date the theory and 1D simulations. We adopt similar param-
eters with the 1D simulations, but include the drifts between
undulator sections. The energy offset of the sidebands are
the same as found previously in the 1D simulations in Fig. 3.
The power ratio along the undulator are shown in Fig. 5.

It can be seen that the power ratio of the sideband to the
seed has a small drop at the beginning of new undulator
sections in the Genesis simulations. This is because the
upstream drift length matches the seed frequency and pro-
duces additional phase shifts (mismatches) for the sidebands.
If we remove the drifts in the plot and use the square of
the undulator length in Fig. 6 as the scale, the power ratio
grows quadratically with the undulator length and modula-
tion amplitude, which is consistent with the theory and 1D
simulations.
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Figure 5: The ratio of the lower sideband to the seed along
the undulator for different modulation amplitude in Genesis
simulations.
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Figure 6: The ratio of the lower sideband to the seed versus
the square of the undulator length (after removing the drifts)
for different modulation amplitude in Genesis simulations.

SUMMARY
In this paper, we have investigated the effects of residual

energy and density modulations on the output of a seeded
FEL. A simple 1D theory is developed to estimate the side-
band content and agrees well with simulations. The power
ratio of the sidebands to the seeded signal grows quadrati-
cally with the modulation amplitude and undulator length
before FEL saturation. Further work includes detailed com-
parison with the experimental observations and developing
methods to produce a more uniform electron beam in the
longitudinal phase space.
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