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Abstract 
To analyze transverse stability of beams with 

significant space charge, a rigid-beam model is usually 
used. In this paper the validity of this model is considered. 
It is concluded that the model is valid for a relatively 
small area of parameters which, however, is the most 
interesting for practical applications. Then the model is 
used for derivation of Landau damping rate in a general 
case. The results are applied to a round Gaussian beam. 
Its stability threshold is described by simple fits for the 
cases of chromatic and octupole tune spreads.  

INTRODUCTION 
Beam particles interact with each other through walls of 

the vacuum chamber. This interaction is conventionally 
described in terms of the wake functions and impedances. 
Generally, the wake fields lead to beam coherent 
instabilities. However, if a beam frequency spread is 
sufficiently large, there are particles that stay in resonance 
with coherent motion. As a result, if their density is 
sufficiently large, the instability is stabilized. This 
dissipation mechanism is called the Landau damping. Its 
damping rate is proportional to the phase space density of 
resonant particles. Contrary to the wake fields, Coulomb 
interaction does not drive the instability by itself, since it 
preserves energy and momentum. However, the collective 
Coulomb field can strongly affect beam stability because 
it separates coherent and incoherent frequencies. Indeed, 
when the beam oscillates as a whole, its collective motion 
does not see the space charge, while an individual particle 
oscillation does. Thus, if the coherent and incoherent 
frequencies are separated, there are no resonant particles 
and consequently no Landau damping, resulting in beam 
instability.  

To analyze beam stability with the space charge, an 
effective method was presented in 1974 by D. Möhl and 
H. Schönauer [1]. To describe transverse oscillations of a 
coasting beam, a heuristic equation of motion was 
suggested: 
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Here 
ix  is the offset of i-th particle, 

scii QQ ΔΩ ,,  are its 

revolution frequency, the tune and the direct space charge 
tune shift, 

00 , QΩ  are the average revolution frequency 

and tune, x  is the offset of beam center and 
cQΔ  is the  

 

impedance-driven coherent tune shift. This equation was 
derived assuming that the beam oscillates as a rigid body. 
Consequently, the beam coherent motion is completely 
described by the dipole offset x . This assumption is 
correct if all lattice frequencies 

ii QΩ  are identical. In this 

case, all particles respond identically to the coherent field, 
so that changes in amplitudes of different particles driven 
by the coherent field are equal. It yields xxi =δ , resulting 

in the beam oscillating as a rigid body. However, a spread 
of the lattice frequencies generally makes the rigid-body 
model of Eq. (1) incorrect. Indeed, an individual response 
to the coherent field is determined by the separation of the 
individual lattice frequency from the coherent frequency, 
which varies from particle to particle. Since individual 
responses are not identical, the beam shape is not 
preserved with the dipole oscillations, so the rigid-body 
model with its Eq. (1) is not self-consistent and generally 
cannot be justified.  

In 2001, M. Blaskiewicz showed a way to analyze the 
problem, avoiding the rigid beam assumption [2]. Within 
a one-dimensional model, he developed a rather 
complicated integral equation on the phase space density 
perturbation. He found two cases when his equation gives 
the same result as the rigid-beam approach. The first case 
was the Lorentz distribution of chromatic frequencies, and 
the second one was the water-bag distribution over the 
transverse actions. With some additional model 
simplifications, he plotted several stability diagrams for 
distributions close to Gaussian. The same problem of self-
consistent beam stability analysis was recently considered 
by D. Pestrikov [3]. Considering a two-dimensional 
model, he came to a general integral equation and found it 
“too complicated even for a numerical solving.” To 
proceed, he accepted a simplification of zero emittance 
for the second plane1, came to the same integral equation 
as M. Blaskiewicz, and reproduced his Lorentz and water-
bag results. For a Gaussian distribution, he plotted some 
additional stability diagrams, and realized that an octupole 
Landau anti-damping, which he found earlier for the 
rigid-beam model [4], disappears. Indeed, Landau anti-
damping cannot exist at all if the distribution is close to 
Gaussian: this is a mere consequence of the second law of 
thermodynamics. A Hamiltonian system in thermal 
equilibrium is always stable. Appearance of Landau anti-
damping in the rigid-beam model is an example of how 
wrong the results of this model can be. Rigid-beam  
 
                                                           
1
 The simplification of zero emittance does not literally mean zero 

emittance in the other plane. Effectively it switches off the particle 
motion in the other plane and reduces the problem to a single dimension. 
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stability diagrams were presented in several papers [4-6], 
but since the model can lead to wrong results, the range of 
its applicability has to be quantitatively clarified. 

MODEL JUSTIFICATION 
As mentioned above, the rigid-beam model is exactly 

correct if all the lattice frequencies are identical, 

00 QQii Ω=Ω . This case is simple, but not so interesting, 

since there is no Landau damping, and any impedance 
makes the beam unstable. Now let us assume some small 
lattice frequency spread, so small that the rigid-beam 
model would still be a good approximation. Specifically, 
this requires the rms spread of the lattice frequencies 

)( ii QΩσ  to be small compared with the separation 

frequency, which is a difference of the coherent frequency 
from an average incoherent one:  

( )sccii QQQ Δ−ΔΩ≡ΔΩ<<Ω )Re()( 0sepσ   ,           (2) 

where scQΔ  is the average space charge tune shift. In this 

case, the rigid-beam model is still good, but due to tails of 
the distribution, there is some amount of the resonant 
particles resulting in the Landau damping. In this case its 
rate LΛ  is small, compared not only with the separation 

frequency 
sepΔΩ , but also with the lattice frequency spread 

sep)( ΔΩ<<Ω<<Λ iiL Qσ . However, if the impedance-

driven instability rate )Im(0 cQΔΩ  is also small, even this 

tiny amount of Landau damping can be sufficient for the 
beam stabilization. Thus, when the instability rate is much 
smaller than the separation frequency, or  

sccc QQQ Δ−Δ<<Δ )Re()Im(   ,                            (3) 

the required Landau damping is small. Consequently, the 
required lattice frequency spread is much smaller than the 
separation frequency. As a result, the frequency spread is 
not significant for a bulk of the beam, and the rigid beam 
model is a good approximation. In other words, when Eq. 
(3) is satisfied, the rigid-beam model is applicable for 
calculation of Landau damping required for beam 
stabilization. 

The above consideration can also be presented in a 
somewhat different way. Eq. (2) determines that we may 
consider the beam as a core with identical lattice 
frequencies and a tiny tail whose frequency spread is 
high. At first approximation, the core oscillates as if there 
is no lattice frequency spread at all, so its oscillations are 
rigid. Since the tail is thin, its influence on the core 
oscillations is weak, and its motion in the field of the core 
can be considered as driven in a strong-weak 
approximation. For a majority of the tail particles these 
driven oscillations do not matter much since they are 
detuned from the core coherent motion. However, a small 
fraction of tail particles, which is resonant with the core, 
plays a significant role. The resonant particles of the tail 
absorb the core coherent energy, damping the core 
coherent motion as a result. This energy-based calculation 
of Landau damping leads to the same result as a formal 
solution of the dispersion equation [7].  

In this paper, we limit ourselves to a case of thin tail, or 
small frequency spread approximation of Eq. (2), where 
the rigid-beam model is applicable. This allows us to 
calculate the Landau damping and the threshold 
parameters of the beam for a relatively small growth rate 
(3). Our primary interest is the threshold calculation. This 
is additionally simplified due to exponentially small phase 
space density of resonant particles, and consequently the 
Landau damping. That is why the threshold is mostly set 
by large value of the dimensionless frequency separation 

)(/sep ii QΩΔΩ σ , and the dependence of threshold on the 

coherent growth rate (impedance) is weak (logarithmical). 
For most practical cases, the expected accuracy of the 
Landau damping rate calculations is typically ~15-30% 
due to inaccuracy of the rigid beam model. However, the 
corresponding accuracy of the instability threshold is 
much higher due to its weak (logarithmic) dependence on 
the Landau damping rate. In practice, the far tails of the 
distributions are not well-measured, or highly 
reproducible. That is why even exact formulas can result 
in poor accuracy for the damping rate. On the contrary, 
the stability threshold is predicted much better. Note also 
that the condition of small impedance of Eq. (3) is 
typically well-satisfied for low and medium energy 
hadron machines. That justifies the application of the 
rigid-beam model for the threshold calculation.  

DISPERSION EQUATION 
After validity limits of the rigid-beam model are 

specified, a solution of Eq. (1) can be considered in more 
detail. Assuming )exp()( titxi ω−∝  and 

)( 00 νω ++Ω≡ Qn , the dispersion relation for the 

eigenvalue ν  follows [1]: 
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Here, all the notations are rather conventional: xa  and 

ya are two transverse amplitudes normalized by the beam 

rms sizes 
xxxxax ψβε cos=  and similar for y; ppp /ˆ Δ=  

is a relative momentum offset; )ˆ,,( paaQ yxlΔ  is the total 

lattice-related tune shift; ),( yxo aaQΔ  is its (octupole) 

nonlinear part; ),( yxsc aaQΔ  is the direct space charge 

tune shift as a function of the amplitudes; and 
22 1/1 γγη −= t

 is the slippage factor. The coherent shift 

)(ωcQΔ  describes the beam interaction with the wall. This 

interaction produces both the dipole and quadrupole 
forces, or, in other words, driving and detuning wakes [8]. 
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Thus, the entire force acting on i-th particle can be 
expressed as 

ii DxxWF += , with W as the conventional 

dipole, or driving wake function, and D as the quadrupole, 
or detuning wake function. For a continuous beam we can 
consider that only the driving wake leads to the coherent 
shift WQc ∝Δ )(ω , because the detuning wake simply 

shifts all frequencies by the same amount and therefore 
can be omitted. 

A conventional method of analysis of the dispersion 
equation consists in drawing stability diagrams for various 
cases. According to what was discussed above, this 
procedure does not make much sense for the rigid-beam 
model if inequalities of Eqs. (2) and (3) are not fulfilled. 
Indeed, the stability diagram pretends to show a stability 
limit for a wide range of the coherent shifts )(ωcQΔ  while 

it is applicable only to the tails of the stability diagram. 
The most impressive example of how wrong it can be is 
the above-mentioned Landau antidamping, erroneously 
predicted by this model for negative octupole nonlinearity 
[4,6]. Thus, the stability diagram obtained within the 
rigid-beam model has to be zoomed in for the small area 
of Eq. (2) and disregarded as invalid for the rest of the 
complex plane. In that area, however, another significant 
step can be done: the rate of Landau damping can be 
calculated and expressed in terms of a regular integral of 
the distribution function f.  

LANDAU DAMPING 
When Eq. (2) is satisfied, the rate of Landau damping 

can be found from Eq. (4). Note that this dispersion 
equation formally defines the dielectric function )(νε  for 

values of ν located on the real axis and the upper half-
plane, 0)Im( ≥ν . To obtain it in the lower half-plain, 

where roots of the dispersion equation are located, the 
direct use of Eq. (4) is invalid; instead, a complex 
extension of analytical function )(νε  has to be used. This 

can be done in the following way. First, let the eigenvalue 
ν  be real, and solve the dispersion equation for the 
coherent shift as a function of the eigenvalue. Then the 
imaginary part of the coherent shift is equal to the Landau 
damping at the boundary of stability. The result is a 
straightforward expansion over a small parameter of the 
relative tune spread 

sepl QQ ΔΔ / . For the real and 

imaginary parts of the eigenvalue, one can write: 
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Note that a sign of the damping rate Λ  is always 
determined by a sign of the derivative of the distribution 
function 

xx aff ∂∂= /  for the resonance particles, similar to 

the classical Landau result for the plasma oscillations (no 
antidamping for monotonic distributions). Note also that 
corrections )1(Qδ and )2(Qδ to the real part of the 

eigenvalue play an important role because the distribution 
function changes fast, and even a small correction to the 
tune of the resonant particles significantly affects the 
damping rate Λ . 

Let us first assume that the tune spread is purely 
chromatic. In this case the first-order correction is equal 
to zero, 0)1( =Qδ , and only the second-order correction 

remains, )2(Qδ . For the Gaussian momentum distribution, 

)2/ˆexp( 22
ppf σ−∝ , and constant transverse density, 

const=Δ scQ , the second-order correction is determined 

by the following equation: 
sepp QQ Δ= /2)2(

νσδ , where 

pp n σηξσν −≡ . That yields the damping rate: 
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This result is e times smaller than a simple-minded result 
neglecting the second-order term )2(Qδ .  

Another possibility to stabilize the beam is an 
introduction of octupole non-linearity. Contrary to the 
case of chromatic spread, the first-order correction to the 
eigenvalue )1(Qδ  is non-zero. For the Gaussian transverse 

distribution, accounting this first-order correction reduces 
the rate Λ  by a constant factor ~2-3, similar to the role of 
the second-order term for the chromatic tune spread. For 
the octupole tune spread the second-order term makes 
only small correction to the damping rate and can be 
neglected.  

As was pointed out above, the rigid-beam model is 
valid only if the frequency spread is small compared with 
the separation frequency, 1/)2,1( <<Δ sepQQδ . Accounting 

the tune corrections )2()1( , QQ δδ  within the rigid-beam 

approximation assumes that inaccuracy of the model is 
smaller than these corrections. Answering this question is 
a subject of separate study. At the moment, we can only 
refer to a specific example of chromatic tune spread for a 
Gaussian beam, considered in Ref. [3] within a 
framework of one-dimensional self-consistent model, 
compared with the rigid-beam result. As it is clearly seen 
from a presented stability diagram, the discrepancy 
between the two results is rather small, ~ 10-20% in the 
area of rigid-beam validity. This suggests that accounting 
the eigenvalue corrections )2()1( , QQ δδ  is within the model 

accuracy, and thus it is legitimate. Finally, it should be 
noted that although the corrections )2()1( , QQ δδ  change the 

damping rate Λ  by 2-3 times, their influence on the 
threshold space charge over the tune spread value is 
relatively small, since the Landau damping exponentially 
depends on beam parameters (like in Eq. (6)), and an error 
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in the pre-exponential factor (~2-3) only slightly modifies 
the threshold.  

THRESHOLD LINES 
As it was stated above, the conventional stability 

diagrams, based on the rigid-beam assumption, are mostly 
invalid if the space charge is present. A small correct part 
of them lies typically so close to zero that it is hard to 
resolve details on the pictures usually presented in the 
literature (Ref. [4-6]). Since these diagrams are mostly 
either misleading or useless, we do not draw them here 
and present the stability threshold in a different way. 
Indeed, Eq. (6) shows that the stability condition depends 
on the two dimensionless parameters. The first parameter 
determines to what extent the coherent and incoherent 
frequencies are separated; obviously, it is defined by the 
ratio of the separation frequency over the lattice frequency 
spread. The second parameter shows how strong is the 
instability to be suppressed by the Landau damping; it can 
be described by the coherent growth rate 

cQΔΩ Im0
in 

units of the separation frequency. A dependence of the 
threshold dimensionless separation over dimensionless 
coherent growth can be called the threshold line. In this 
section we present it for the case of round Gaussian beam. 
The problem is solved for the cases of the pure chromatic 
tune spread with ( ) ppl ppnQ σσηξ ν /ˆˆ ≡−=Δ , and the 

tune spread introduced only by octupole non-linearities 
equal for both planes, 2/)( 22

yxool aaQQ +=Δ=Δ νσ . The 

results are presented in Figures. 1, 2. 
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Figure 1: Threshold line for the chromatic tune spread. 
The dimensionless maximal space charge tune shift 

pscQ νσ/)0(Δ  is plotted versus dimensionless growth time 

csc QQ ΔΔ Im/)0( . The dots are numerical results, and the 

line is a fit with the formula highlighted in yellow.  

To compute the space charge tune shift for a round 
Gaussian beam, 

xyx εβσσ == , we used a conventional 

formula:  
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where )4(/)0( 32 εγπβλCrQ psc =Δ  is the maximal space 

charge tune shift, and λ is the linear density. For 
numerical calculations, we used the following fit,  
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which is accurate within few percent for 6, ≤yx aa . 
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Figure 2: Threshold line for the octupole tune spread.  

There is a significant difference between the two plots: 
for the octupoles, the stabilizing tune spread is 3-4 times 
smaller than required for the chromatic tune spread. The 
reason is that the octupole-driven tune shift goes 
quadratically with amplitudes, while the chromatic tune 
shift is a linear function of the momentum offset.  

SUMMARY 
The applicability of the rigid-beam model is considered 

for the case when the space charge plays significant role 
in beam dynamics. The results prove that the stability 
diagrams obtained with this model are not valid for most 
of the complex plane of the coherent shift. However, the 
small area where it is valid typically covers the entire area 
of practical interest. Based on the rigid-beam model, 
rather simple formulas for the Landau damping were 
calculated. These formulas are used for the calculation of 
the threshold space charge tune shift versus coherent 
growth time. Convenient analytical fits for the threshold 
lines are presented. 
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