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Abstract
Coupling between different degrees of freedom 
complicates analysis of beam dynamics in a ring. 
Nevertheless appropriate choice of dynamic variables 
often allows reducing a problem to uncoupled case. 
Effects of coupling on the beam instabilities and their 
damping are considered using the extended Mais-Ripken 
parameterization for X-Y coupled motion.  

PARAMETERIZATION OF COUPLED 
MOTION  

We will use the extended Mais-Ripken 
parameterization to describe the coupling between two 
degrees of freedom. This introduction presents definitions 
and major results required for further consideration. 
Details and proofs can be found in Ref. [1].   

The eigenvectors are parameterized in the following 
form: 
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where - and -functions are similar to the corresponding 
values of uncoupled case, u characterizes the strength of 
coupling, and ’s characterize the phase differences 
between horizontal and vertical motion. Symplecticity 
requires that only 8 of 11 functions are independent (see 
[1] for details). The eigenvectors are normalized so that 
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where U is the unit symplectic matrix,  
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A single particle motion can be presented in the following 
form:  
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where vector T
yx ssyssxs )(),(),(),()(x describes 

particle coordinates, ’s are the betatron phase advances, 

s is the path length, and 1 and 2 are the single particle 
emittances (generalized Courant-Snyder invariants). If 
longitudinal magnetic field is equal to zero, x  and y

can be considered as particle angles, otherwise they have 
to be considered as generalized momenta. Dependence on 
s was explicitly shown in Eq. (4). We  omit this notation 
below.  
  Gaussian distribution function can be written in the 
following form 

2
exp

4
1)(

21
2

xxx
T

f   ,       (5) 

where  
,TT UVUV

,)Im(),Re(),Im(),Re( 2211 vvvvV     (7) 

,2,1,
0

0
,1

2

1
1 n

n

n
n0

0

and 1 and 2 are emittances of modes 1 and 2.  Note that 
the total 4D emittance of the beam is equal to the product 
of mode emittances, 214D , where we omit the factor 

2/2 correcting for the volume of 4D ellipsoid. The 
inversion of  matrix results in the matrix of second 
moments 1

ji xx In particular the rms beam 

sizes are: 
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PERTURBATION THEORY 
For unperturbed motion the eigenvectors and 

eigenvalues are related to the transfer matrix M as 
following: 

4,...1, jjjj vMv .              (10) 
Then for the perturbed motion one can write:  

jjjj vvMM ~~ ,           (11) 
where the perturbed eigenvectors are presented as a sum 
of unperturbed ones, 

,1,~ 4
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and without limitation of generality one can consider 
that 0ii . Substituting Eq. (12) into Eq. (11), linearizing 
the resulting equation, and using Eq. (10), one obtains:  
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i
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where I is the identity matrix. In the case of stable motion 
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the eigenvalues and eigenvectors represent two complex 
conjugate pairs. Taking this into account, 

*
22

*
114321 vvvvvvvv , and introducing 

complex matrix *
22

*
11 vvvvVc  one can rewrite 

Eq. (13) in the form of two matrix equations: 
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Matrix Vc consists of symplectic vectors and its inverse is 
equal to:  
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One can verify it by utilizing the eigenvector 
normalization of  Eqs. (2). Inversion of Eq. (14) with help 
of Eq. (15) finally results in:  
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 (16) 
Multiplication of Eqs. (16) by  0001  and 

0100 , correspondingly, results in corrections for 
the eigenvalues: 
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TUNE SHIFTS  
Let us find the tune shifts due to a local focusing 

perturbation. In the general case the perturbation of the 
Hamiltonian is proportional to 22 2 yxyx ysx .
That results in the transfer matrix of the perturbation: 
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Then the perturbation to the transfer matrix (see Eq. 11) is 
MMM q . Substituting it to Eqs. (17) and taking into 

account the relationship between the eigenvalue 
corrections and the tune shifts, nQ nni /)4/( ,
one obtains [2]*:
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Performing multiplications using the eigenvectors of Eq. 
(1) one finally obtains: 
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One can see that in the case of uncoupled motion, 1y = 2x
= 0, the tune shifts coincide with the well-known 
expression for the tune shift of uncoupled motion. 

TRANSVERSE INSTABILITIES IN X-Y 
COUPLED CASE 

First, let us find how amplitudes of betatron motion, a1
and a2, are changed due to a single local kick. Using Eq. 
(4) one can express the vector of particle coordinates 
through the amplitudes 

..
2
1

2211 CCaa vvx    ,  (21) 

where C.C. denotes the complex conjugate. If kicks in the 
horizontal and vertical planes are equal to x  and y  a 
change of particle vector is:  

xxx  ,     (22) 
with T

xx 00x . To find changes of the 
amplitudes, we substitute the particle vectors in the form 
of Eq. (21) to Eq. (22). That results in   
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Multiplying it by Uv1 or Uv 2 and using orthogonality 
conditions of Eq. (2)  one obtains: 
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To compute changes of betatron amplitudes due to 
beam interaction with vacuum chamber, we express the 
transverse kicks through the transverse impedances per 
unit length,  

s
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Substituting the above equations in Eqs. (24) and 
expressing the displacements through the amplitudes 
using Eq. (21), one obtains:  
                                                          
* Note that there is close resemblance between the tune shift of  Eq. (19) 
and the energy shift  of perturbed level in the quantum mechanics 

|| UE . Appearance of matrix U in Eq. (19)  is related 

to the orthogonality conditions of Eq. (2). 
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where CZ  denotes the complex conjugate of CZ , Ib

is the beam current,  and  are the relativistic factors, and 
e and m are the particle charge and mass. In the above 
equation we took into account that the phase averaging 
nullifies terms proportional to the complex conjugated 
values of a1 and a2 if the instability growth rates are much 
smaller than the distance to the nearest half integer or 
difference coupling resonance: 

nnT 2,121 ,2 .   (27) 

If the ring impedance is dominating the beam dynamics 
and other phenomena (Landau damping, space charge, 
etc.) can be neglected the solution of dispersion equation, 

0IMIM Z   ,   (28) 
yields the eigenvalues and, consequently, the instability 
growth rates. 

 Nevertheless if in addition to conditions of Eq. (27) the 
instability growth rates are smaller than the tune 
separation, 

nT 221   ,    (29) 
the phase averaging nullifies the off-diagonal elements in 
matrix MZ and the modes are decoupled. This reduces 
the problem to the much better known problem of 
uncoupled  instability resulting in that the entire single 
plane theory (both for bunched and unbunched beam) 
works with the following substitutions [3]: 
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As example we consider the dispersion equation for 
continuous beam with space charge of Ref. [4]. For the 
mode 1 it is: 
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Comparing to Ref. [4] one can see that Eq. (31) was 
obtained by replacement of amplitudes ax and ay by a1 and 
a2. However one has to note that there are other details 
that need to be taken into account: (1) the chromaticity, 

n1, is the mode chromaticity and has to be computed with 
coupling taken into account; (2) the coherent tune shift, 

Qc1, has to be computed with Eq. (30); (3) the incoherent 
tune shift, Qic1, and the tune shift due to lattice 
nonlinearity Qlat1 have to be computed using Eq. (20) 
where additionally one needs to take into account that the 
beam field has both normal and skew quadrupole fields 
due to beam rotation described by Eq. (9) or by its 
extension if the dispersion contributions to the beam sizes 

are not negligible. 
Note also that if the growth rate is much larger than the 

fractional part of tune separation, }{ 21T , and 
impedances are directed along x- and y-axes so that 

xZ xx  and xZ yy , the coupling can be 
neglected and growth rates can be computed for 
uncoupled beta-functions.†

EFFECT OF COUPLING ON 
TRANSVERSE DAMPER OPERATION 
Digital bunch-by-bunch horizontal and vertical 

Tevatron dampers have been used to prevent development 
of transverse instabilities [5]. In the process of their 
commissioning and operation we found out that if 
coupling becomes too large a damper can unstabilize the 
motion in the orthogonal plane. That forced us to consider 
the damper operation in all details including effect of 
coupling considered below.  

Pickups and kickers of both dampers are in the same 
straight line with no focusing elements in between. Figure 
1 depicts the schematic for one of two dampers. In further 
consideration we will consider the horizontal damper 
only.  

x2
x1

x3

x4

M1
1

2

M2

Pickup

Kicker
K( )

Figure 1: Transverse damper schematic 

To suppress the effect of orbit offset on the damper 
operation, the kicker voltage is proportional to the beam 
position difference for two consecutive turns (digital 
notch filter). The kick is applied with additional one turn 
delay because of too large delay in electronics. It also 
results in appropriate betatron phase advance between 
pickup and kicker. The following sequence of equations 
describes the system: 

,
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where the first index numerates the position along the ring 
(see Figure 1), the second index numerates the turn 
number and the kick matrix is determined as 
                                                          
† It is similar to the degenerate case in the quantum mechanics where 
perturbations of energy levels have to be calculated in the basis (linear 
combination of degenerated modes) which diagonalizes the Hamiltonian. 
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Combining Eqs. (32) one obtains:  
.211111211 kkkk xxGxMMx  (34) 

Rewriting this equation through the eigenvectors and 
eigenvalues results in: 

vGMMv 21
2 ,  (35) 

where we took into account that 12MMM . In the 
linear approximation the unperturbed eigen-
values, ni

n e , can be used in the perturbation term,  
21

2GMM    .  (36) 
That results the following corrections for the eigen-
vectors
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The equations for vertical damper coincide with Eq. 
(37) but one needs to redefine the kick matrix of Eq. (33) 
so that the gain is moved from G21 to G43.

Substituting numerical values of Tevatron lattice 
proved that a single plane damper can introduce 
instability in other plane if coupling is sufficiently strong. 
Simulations also showed that the major reasons of such 
behavior were significantly larger beta-function in the 
plane orthogonal to the damping plane (uncoupled optics) 
and the additional one turn delay which doubles the effect 
of coupling.  

INSTABILITIES IN X-L COUPLED CASE   
While strong coupling between longitudinal and 

transverse planes is not frequently encountered, it can be 
important if the longitudinal impedance is large at places 
with large dispersion. The beam interaction with axially 
symmetric high order modes of RF cavities located at 
non-zero dispersion can present an example of such 
interaction. Below we consider how such coupling could 
affect the longitudinal and transverse instabilities. 

There is no difference in description of x-y coupling 
considered in Section 1 and x-l coupling. In this section 
we will consider that y-axis is directed along the beam 
direction which leaves all formulas in Section 1 intact. It 
also implies that pppp y //|| .

To proceed further we need to take into account the 
difference in the definitions of transverse, Z , and 
longitudinal, ZL, impedances per unit length. By definition 
the longitudinal force acting on a particle is: 

)(|||| ZeIF   .   (38) 
To express it through the particle displacement we take 
into account the relationship between Fourier harmonics 

of beam current perturbation and particle displacement:  

c
kkyiII b ,   .   (39) 

That results in: 
ykZieIF b )(||||   .   (40) 

In its turn the definition of the transverse impedance 
results in the force acting on a particle equal to: 

xZieIF b )(   .   (41) 
Combining results of Section 4 with Eqs. (40) and (41) 
one finds that the following substitutions 

,
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reduce the problem to a single dimensional problem 
similar to the  x-y coupling considered in Section 4. 
However, in spite of obvious similarity presented above, 
there is significant difference in dynamics of longitudinal 
and transverse degrees of freedom. It is related to the 
large difference in tunes and higher relative non-linearity
for longitudinal motion. Therefore one needs to be 
cautious applying results of x-y coupling to the x-l
coupling.

CONCLUSIONS 
In the case of coupling between two (or more) degrees 

of freedom an appropriate choice of dynamic variables 
allows to reduce a problem of beam stability to the case of 
a single degree of freedom. Symplecticity of the particle 
motion greatly simplifies analytical calculations and 
usage of the extended Mais-Ripken parameterization 
yields clear and physically meaningful results.  
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