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Abstract 
It was done the studies on high intensity ion beam 

dynamics in axisymmetric rf linacs both analytically, in 
terms of the so-called smooth approximation, and 
numerically in [1-3] rather carefully. For all that, effects 
of beam self-space-charge field were not taken into 
consideration under analytical investigations of the 
focusing by means of non-synchronous harmonics up to 
date. These effects are said to affect a focusing parameters 
choice deeply. A “beam-wave” Hamiltonian is derived 
under assumption that a bunch has an ellipsoidal form. 
Analytical results specify that given in [4] and it is 
verified numerically. 

INTRODUCTION 
Linac design is of interest to many fields of science, 

industry and medicine (e.g. nuclear physics, surface 
hardening, ion implantation, hadron therapy). The number 
of linacs is increased steadily. The most significant 
problem for low-energy high-current beams of charged 
particles is the question of its stability because of the 
influence of Coulomb’s repelling forces. Beam motion 
stability can be realized by means of the following 
focusing types: alternating phase focusing, radio 
frequency quadrupoles, focusing by means of the 
nonsynchronous wave field as well as the undulator one.  

However, system with alternating phase focusing is not 
suitable for low-energy high-current beam acceleration, 
because it requires small values of synchronous phase. 
Radio frequency quadrupoles showed itself as initial linac 
sections well, but careful beam dynamics study gives, that 
considerable part of input rf power is spent on transverse 
focusing. Due to such rf power disproportion between 
degrees of freedom radio frequency quadrupoles have a 
small acceleration rate usually. Acceleration and focusing 
can be realized by means of the electromagnetic waves 
which are nonsynchronous with a beam (the so-called 
undulator focusing). Unfortunately, systems without the 
synchronous wave are effective only for light-ion beams. 
For low-energy heavy-ion beams to be accelerated it is 
necessary to have the synchronous wave with particles. 

Linac sections with rf focusing by the nonsynchronous 
harmonics can be adequate alternative to that with 
alternating phase focusing and radio frequency 
quadrupoles, joining its advantages. Zero-intensity beam 
dynamics analysis in linac sections with rf focusing by the 
nonsynchronous harmonics was done previously [1-3]. 
For intense, high-brightness beams from rf linacs, it is 
important to have analytical results together with 

numerical ones which help do a linac parameters choice 
to ensure total beam stability. In this paper analytical 
results specify that given in [4] and it is verified 
numerically.  

BASIC RELATIONS 
Self-consistent beam dynamics is described by the 2nd 

Newton’s law together with Poisson’s equation as 
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where m is a beam mass, R is a beam radius-vector, q is a 
beam charge, E is an external rf field, Φc is the self-space-
charge field potential, ρ is a beam charge density, ε0 is the 
free space permittivity. 

Let us express rf field in axisymmetric periodic 
resonant structure as an expansion by the standing wave 
spatial harmonics assuming that a structure period is a 
slowly varying function of the longitudinal co-ordinate z 
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where En is the nth harmonic amplitude of RF fields the 
axis; ( ) Dnkn π+θ= 2  is the propagation wave number 
for the nth RF field spatial harmonic; D is the geometric 
periods of the resonant structure; θ is the phase advances 
per period D; ω is the circular frequency; I0, I1 are 
modified Bessel functions of the 1st kind of orders 0 & 1. 

One assumes the beam velocity does not equal one of 
the spatial harmonic phase-velocities except the 
synchronous harmonic of rf field, the geometric period of 
rf structure being defined as ( )πθ+λβ= 2sD s , where s 
is the synchronous harmonic number, βs is the relative 
velocity of the synchronous particle, λ denotes rf 
wavelength.  

The analytical investigation of the beam dynamics in a 
polyharmonic field (2) is a difficult problem. Rapid 
longitudinal and transverse oscillations as well as a strong 
dependence of field components on transverse 
coordinates does not allow us to use the linear 
approximation in the paraxial region for a field series. 
Nevertheless the self-consistient analytical beam 
dynamics investigation can be carried out by means of the 
so-called smooth approximation [5].  
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Thus, the solution of the motion equation (the particle 
path) in the rapidly oscillating field we shall search as a 
sum of a slowly varying beam radius-vector component 
and a rapidly oscillating one. After some manipulations 
(as it was done in Ref. [1-5]) one can readily obtain the 
motion equation, in the synchronous particle frame, in the 
well-known form 

 ef2
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where Q = {ζ, η}, ( ) λβ−π= ssRRQ 2 , R is the mean 
value of R over rapid oscillation period, Rs is the 
synchronous particle radius-vector, τ = ωt, Uef is the 
effective potential function (EPF) which is defined as 

 cextef UUU += . (4) 

Here Uext is the external rf field potential which consists 
of three terms: 
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22 mcqEe sii πβλ= , c is the light velocity, 

{ }0N,, ∪∈pns , ( ) jjiji kkk −=ν , , ( ) jjiji kkk +=μ , , 

( )jijiji ,,, 5.0 μ+ν=ι  and the functions of the 
dimensionless transverse coordinate are defined as 
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Charge density is considered as a constant due to the 
fact that Uext does not depend on time variable explicitly. 
Therefore one can write the self-space-charge field 
potential for the biaxial beam shape in a form 
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where W0 = mc2, Ib is the beam current and coefficients 
are 
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Here ℓ and ρ [m] are RMS beam length & radius. Using 
Eq. (3) one can obtain a “beam-wave” Hamiltonian. 

Maclaurin series of the EPF is 
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and the expansion coefficients are given by 
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It is necessary that the parameters of the channel will be 
chosen in terms of the conditions 0,0 2

0
2
0 >Ω>Ω ηζ  (for 

the simultaneous transverse and longitudinal focusing). 
In terms of Eq. (9) one can readily write threshold 

current values for longitudinal and transverse beam 
motion: 
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COMPUTER SIMULATION RESULTS 
The analytical results obtained above were used to 

estimate the beam threshold current at the linac with 
θ = π. The beam was the unbunched 2.5 keV/u lead ions 
Pb25+ with charge-to-mass ratio 0.12. We consider there 
are two spatial harmonics at the linac. One of it is the 
synchronous harmonic with s = 0, and another one is the 
nonsynchronous (focusing) with n = 1. In the beginning, 
beam dynamics simulation was conducted to calculate 
threshold beam current values under next conditions: 
system length – 2.44 m; bunching length and field 
increasing one were the same and the former being equal 
to 1.75 m; channel aperture – 5 mm; input/output value of 
the equilibrium particle phase ϕs were π/2 and π/6; 
synchronous harmonic maximal value at the axis was 
equal to 16.1 kV/cm; the ratio of the harmonic 
amplitudes  e1/e0 was equal to 9. The equilibrium particle 
phase linearly increases at the bunching length and 
plateaus further. Note that the variation of the 
synchronous harmonic amplitude against longitudinal 
coordinate (at field increasing length) was calculated by 
using the technique described in [3]. Initial beam radius 
was 1 mm. Threshold beam currents behavior is shown in 
Fig. 1. One can see that threshold values increase at the 
linac length. It can seem strange but it should not forget 
that harmonic amplitudes are increasing functions too. 
Thus one can see that total threshold current value is 
defined by the longitudinal one and the beam current 
value should not be grater than that at the linac input. 

Further, the results obtained above were verified by 
means of a modified version of the specialized computer 
code BEAMDULAC–ARF3 [1] under different beam current 
values. Results obtained above agree within a few percent 
with the numerical simulation ones. Threshold current, 
which ensure high particle transmission, is equal to 6 mA 
for the chosen parameter set. There are longitudinal (a) 
and transverse (b) beam phase space projections together 

with separatrix and RMS ellipse under 5 μA beam current 
in Fig. 2 (GC – beam gravity center). The output beam 
energy and current transmission coefficient are 103 keV/u 
and 85% respectively. 

 
Figure 1: Threshold beam currents. 

 

 

Figure 2: Beam phase space projections. 

SUMMARY 
Beam dynamics model with regard for particles 

interactions was made. Threshold beam currents were 
evaluated in terms of this model. The necessary 
restrictions on the linac parameters were imposed. The 
numerical simulations of the self-consistent low-velocity 
high-brightness heavy-ion beam dynamics confirmed the 
analytical results obtained in toto. 
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