
NONLINEAR OPTICS AS A PATH TO HIGH-INTENSITY CIRCULAR 
MACHINES* 

S. Nagaitsev#, A. Valishev, FNAL, Batavia, IL 60510, U.S.A. 
V. Danilov, SNS, Oak Ridge, TN 37830, U.S.A.

Abstract 
What prevents us from building super-high intensity 

accelerators? The answer is case-specific, but it often 
points to one of the following phenomena: machine 
resonances, various tune shifts (and spreads), and 
instabilities. These three phenomena are interdependent in 
all present machines. In this paper we propose a path 
toward alleviating these phenomena by making 
accelerators nonlinear. This idea is not new: Orlov (1963) 
and McMillan (1967) have proposed initial ideas on 
nonlinear focusing systems for accelerators. However, 
practical implementations of such ideas previously proved 
elusive [1]. 

INTRODUCTION 
All present accelerators (and storage rings) are built to 

have “linear” focusing optics (also called lattice).  The 
lattice design incorporates dipole magnets to bend particle 
trajectory and quadrupoles to keep particles stable around 
the reference orbit.  These are “linear” elements because 
the transverse force is proportional to the particle 
displacement, x and y.  This linearity results (after the 
action-phase variable transformation) in a Hamiltonian of 
the following type: 

   2121 ),( JJJJH yx νν += , (1) 
where νx and νy are betatron tunes and J1 and J2 are 
actions.  This is an integrable Hamiltonian.  The 
drawback of this Hamiltonian is that the betatron tunes 
are constant for all particles regardless of their action 
values.  It has been known since early 1960-s that the 
spread of betatron tunes is extremely beneficial for beam 
stability due to the so-called Landau damping.  However, 
because the Hamiltonian (1) is linear, any attempt to add 
non-linear elements (sextupoles, octupoles) to the 
accelerator generally results in a reduction of its dynamic 
aperture, resonant behavior and particle loss.  A 
breakthrough in understanding of stability of Hamiltonian 
systems, close to integrable, was made by N. 
Nekhoroshev [2].  He considered a perturbed Hamiltonian 
system: 
  ),,,( ),( 212121 θθε JJqJJhH += , (2) 
where h and q are analytic functions and ε is a small 
perturbation parameter.  He proved that under certain 
conditions on the function h, the perturbed system (2) 
remains stable for an exponentially long time.  Functions 
h satisfying such conditions are called steep functions 

with quasi-convex and convex being the steepest.  In 
general, the determination of steepness is quite complex.  
One example of a non-steep function is a linear 
Hamiltonian Eq. (1). 

In Ref. [1] we proposed three examples of nonlinear 
accelerator lattices.  In this paper we will concentrate on 
one of the lattices, which we know results in a steep 
(convex) Hamiltonian. We will also describe how to 
implement such a lattice in practice.   

NON-LINEAR LATTICE 
Consider an element of lattice periodicity consisting of 

two parts: (1) a drift space, L, with exactly equal 
horizontal and vertical beta-functions, followed by (2) an 
optics insert, T, which has the transfer matrix of a thin 
axially symmetric lens (Figure 1).  Alternatively, the T 
insert can have a transfer matrix of an opposite sign with 
a phase advance of 180 degrees in both planes, which we 
use in our implementation below. 

 
Figure 1: An element of periodicity: a drift space with 
equal beta-functions followed by a T  insert. 
 

Let us assume that we have equal linear focusing in the 
horizontal and vertical planes such that the beta-functions 
in the drift space are equal to 
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The insert T can be implemented with regular elements 
(quadrupoles, dipoles, drifts) as described below.  Let us 
now introduce additional transverse magnetic field along 
the drift space L.  The potential, V(x, y, s), associated with 
this field satisfies the Laplace equation, ΔV = 0. 

Now we will make a normalized-variable substitution 
[1] to obtain the following Hamiltonian for a particle 
moving in the drift space L with an additional potential V: 
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where 
 ( ) ( ))(,)(,)()(,, ψψβψβψβψ syxVyxU NNNN = (5) 

and ψ is the “new time” variable defined as the betatron 
phase, 
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The potential U in equation (4) can be chosen such that it 
is time-independent [1].  This results in a time-
independent Hamiltonian (4).  We will now choose a 
potential such that the Hamiltonian (4) possesses the 
second integral of motion.  We will omit the subscript N 
from now on. 

Consider potentials [3] that can be presented in elliptic 
coordinates in the following way 
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where f and g are arbitrary functions, 
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are elliptic variables and c is an arbitrary constant. 
The second integral of motion yields 
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First, we would notice that the harmonic oscillator 
potential (x2 + y2) can be presented in the form of Eq. (7) 
with ( )1)( 222

1 −= ξξξ cf  and ( )222
1 1)( ηηη −= cg .  Second, 

we have found the following family of potentials that 
satisfy the Laplace equation and, at the same time, can be 
presented in the form of Eq. (7): 
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where d, q, and t are arbitrary constants.  Thus, the total 
potential energy in Hamiltonian (3) is given by 
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Of a particular interest is the potential with d = 0 and 

tq
2
π

= , because its lowest multipole expansion term is a 

quadrupole.  Figure 2 presents a contour plot of the 
potential energy Eq. (11) for c = 1 and t = 0.4. 

 
Figure 2: A contour plot of the potential energy Eq. (11) 
with c = 1 and t = 0.4.  The repulsive singularities are 
located at x = ±c and y=0. 

The multipole expansion of this potential for c = 1 is as 
follows: 
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where t is the magnitude of the nonlinear potential. 
Since the 2D Hamiltonian with this potential has two 

analytic integrals of motion, it is integrable and thus can 
be expressed as an analytic function of actions: 

  ),( 21 JJhH = , (13) 
where 

  ξ
π

η
π ξη dpJdpJ ∫∫ ==

2
1    

2
1

21  (14) 

Let us now determine the maximum attainable betatron 
frequency spread in such a potential.  First, this potential 
provides additional focusing in x for t > 0 and defocusing 
in y.  Thus, for a small-amplitude motion to be stable, one 
needs 0 ≤ t < 0.5.  This, corresponds to the following 
small-amplitude betatron frequencies, 
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where ν0 is the unperturbed linear-motion betatron 
frequency.  For arbitrary amplitudes the frequencies are 
obtained by 
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Figure 3 presents frequencies ν1(J1, 0) and ν2(0, J2), 
normalized by ν0 for t = 0.4. 
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Figure 3: Oscillation frequencies ν1(J1, 0) (top) and     
ν2(0, J2) (bottom), normalized by ν0, for t = 0.4 
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By examining the function h in Eq. (13) one can also 
demonstrate that it is a convex function and thus satisfies 
the Nekhoroshev’s condition for a steep Hamiltonian.  In 
the next section we discuss how to implement such a 
system in a practical accelerator. 

PRACTICAL IMPLEMENTATION 
Since only a part of the accelerator circumference must be 
occupied by the nonlinear elements, it is natural to start 
with a conventional design machine. The lattice must 
satisfy the following design criteria: 
• Be periodic, with the element of periodicity 

comprised of a drift space with equal beta-functions, 
and a focusing and bending block with the betatron 
phase advance in both planes equal to π (T-insert in 
Fig. 1). 

• The T-insert must be tunable to allow a wide 
range of phase advances (and beta-functions) in the 
drift space in order to study different betatron tune 
working points. 

• It is preferable that the focusing block is 
achromatic in order to avoid strong coupling between 
the transverse and longitudinal degrees of freedom. 

 
Currently, a superconducting RF test facility is under 
construction at Fermilab’s New Muon Lab [4]. Upon 
completion, the facility will consist of an electron linac 
delivering bunches with the energy of up to 750MeV and 
an experimental area located in a 16x16 m hall. The 
experimental program for NML includes advanced 
accelerator physics R&D, and a small storage ring for 
studies of nonlinear dynamics could be included as a part 
of that program. Considering the NML hall space and 
beam energy constraints, we restricted the machine to 
approx. 13x13 m footprint (Fig. 4). 

 
Figure 4: Layout of the test ring. 
 
In the design of the test ring, the lattice has four periods, 
in which a Double Bend Achromat with 10 quadrupoles 
represents the T-insert. The drifts for the nonlinear lens 

blocks have a length of 3 m. There are also four 2.5 m 
straight sections for installation of an RF cavity, injection 
devices and instrumentation. The lattice functions of the 
periodicity element are presented in Fig. 5, and main 
parameters of the machine are listed in Table 1. 

 
Figure 5: Test ring lattice functions. The phase-

advances μ are given in units of 2π. 
 

Table 1: Main Parameters of the Test Ring 
Electron beam energy 150 MeV 
Circumference 38 m 
Dipole field 0.5 T 
Betatron tunes Qx=Qy 2.4÷3.6 
Synchrotron radiation damping time 1-2 s 

(107 turns) 
Transverse emittance  
(rms non-normalized) 

6×10-8 m 

 
Such machine can be used to test the nonlinear integrable 
optics concept by demonstrating stable operation at super-
high values of the betatron tune spread. In the proposed 
lattice design, the phase advance ν0 over the drift space 
with nonlinear element can be varied from 0.1 to 0.4 (this 
corresponds to the betatron tune between (0.5+0.1)×4=2.4 
and (0.5+0.4)×4=3.6). According to Eq. (15), the 
maximum attainable tune spread in this case can exceed 
1, which means that some particles within the bunch 
would cross the integer resonance. 

In order to demonstrate the high tune spread, the 
transverse beam size must be comparable to the distance 
between the poles of the potential U (Fig. 2), located at 
x=±c and y=0. For the chosen ring energy and equilibrium 
emittance, the beam size σx,σy≈0.25 mm, which would 
require an impractically small transverse dimensions of 
the nonlinear elements. However, due to the very long 
damping time it is possible to “paint” a larger area with 
the small emittance linac beam. Hence, we considered 
nonlinear elements with the aperture 2c ≥ 2 cm. 

It is not practical to realize the continuous variation of 
the cross section of the nonlinear element as required by 
Eq. (5). Rather, one would construct the nonlinear lens 
block of a number of elements with constant cross 
section. This modification presents a perturbation of the 
ideal integrable system. In addition, the integrability can 
be disturbed by optics errors common to conventional 
accelerators, such as the beta-function and phase advance 
modulation. These factors motivated the study of the 
system stability using numerical simulation. 
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Macro particle tracking codes were used to simulate the 
effect of various factors on the stability of particle 
motion. The simulations also generate the dipole moment 
spectra, a quantity that can be used to evaluate the 
betatron tune spread and which is reported by common 
accelerator instrumentation. 

In the simulation, the nonlinear lenses were 
implemented as thin kicks, and tracking through the 
accelerator arcs was performed with conventional 
methods. A typical simulation would track 5000 particles 
over 8,000 turns to produce the spectra and 106 turns to 
check the particle stability. The initial distribution had the 
amplitude of particles limited by c/2 in the horizontal 
plane and c in the vertical plane, and random phases. 

 

 
Figure 6: Spectra of horizontal (upper plot) and vertical 
(lower) dipole moment for various values of nonlinearity 
t. Linear ring betatron tunes Qx=3.6, Qy=3.62. 
 

Figure 6 presents the dipole moment spectra for the 
case of the ring betatron tunes Qx=3.6, Qy=3.62 (ν0=0.4) 
and different magnitude of nonlinearity t. As one would 
expect at t=0 there is no tune spread since the machine 
lattice is linear. The tune spread grows as the nonlinearity 
increases. For t=0.4 the maximum tune spread is 
ν0×4×1=1.6 (see Fig. 3), which can not be seen in Fig. 6 
due to the properties of the Fourier transformation, and 
because the observed quantity, the horizontal or vertical 
dipole moment, is a combination of normal modes. Some 
particles of the bunch had their tune on the integer 

resonance and yet no instability was observed even 
though the lattice was not perfectly symmetrical. 

A more convenient presentation is shown in Fig. 7, 
where the spectra of horizontal dipole moment are plotted 
for a special initial particle distribution with y, py=0. For 
such case, the horizontal coordinate coincides with one of 
the normal modes and it is possible to compare the 
tracking results with the analytical model in Fig. 3. 
Indeed, for t=0.1 the tune for small amplitude particles is 
0.5×4+ν0√(1+2t)=3.75, and particles with larger 
amplitudes have a positive tune shift. For t=0.4, the small 
amplitude tune is 0.5×4+ν0√(1+2t)=4.15, which at the 
plot is seen as 1-0.15=0.85. 
 

 
Figure 7: Spectrum of horizontal dipole moment for 
various values of nonlinearity t. Qy=3.62, y, py=0. 
 
The stability of the system to the following perturbations 
was studied: 
• Phase advance in the T-insert not equal to π, 

different horizontal and vertical phase advance, 
differences between the elements of periodicity. It 
was found that up to 0.05 tune difference is tolerable. 

• Different β-functions in the nonlinear lens 
blocks. Up to 5% variation between x and y did not 
cause particle losses. 

• Misalignment of thin nonlinear elements within 
the lens block. Up to 5 cm error in the longitudinal 
position of the individual element is allowed, 
although the tolerance depends on the phase advance 
in the nonlinear straight section and on the value of 
nonlinearity. The system is less sensitive to 
perturbations at smaller values of ν0 and t. 

A more elaborate study of the system stability range is 
underway with the focus on machine nonlinearities, such 
as the chromaticity correction sextupoles, and the effect 
of longitudinal dynamics, e.g. the importance of 
chromaticity of T-inserts and zero dispersion in the 
nonlinear lens section. 
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SUMMARY 
In this paper we presented an example of completely 

integrable non-linear optics and its practical 
implementation. 

Tune spreads of 50% are possible.  In our test ring 
simulation we achieved tune spread of about 1.5 (out of 
3.6).  Such a system has the potential to make an order of 
magnitude increase in beam brightness and intensity 
because of increased Landau damping. 

REFERENCES 
[1] V. Danilov and S. Nagaitsev, Phys. Rev. ST Accel. 

Beams 13, 084002 (2010). 
[2] N. Nekhoroshev, Russian Math Surveys 32:6 (1977), 

p. 1-65.  
[3] G. Darboux, “Sur un problème de mécanique”, Arch. 

Néerlandaises Sci., Vol. 6, 371–376 (1901). 
[4] M. Church et al., “Plans for a 750 MeV Electron 

Beam Test Facility at Fermilab”, in Proceedings of 
PAC07, Albuquerque, NM 2007. THPMN099. 

 
 

 

THO1D01 Proceedings of HB2010, Morschach, Switzerland

680 Beam Dynamics in High-Intensity Circular Machines


