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Abstract

Two dimensional electromagnetic models (i.e. assuming
an infinite length) for the vacuum chamber elements in a
synchrotron are often quite useful to give a first estimate
of the total beam-coupling impedance. In these models,
classical approximations can fail under certain conditions
of frequency or material properties. We present here two
formalisms for flat and cylindrical geometries, enabling
the computation of fields and impedances in the multilayer
case without any assumption on the frequency, beam ve-
locity or material properties (except linearity, isotropy and
homogeneity).

INTRODUCTION

In this old subject [1], the general formalism of B.
Zotter [2] enables the analytical computation of the elec-
tromagnetic (EM) fields in frequency domain and the
impedance created by a beam in an infinitely long multi-
layered cylindrical pipe made of any linear materials. Still,
improvements of this formalism were possible for better
accuracy and computational time, thanks in particular to a
matrix formalism for the field matching. Also, it is possible
to extend this theory to any azimuthal mode instead of only
m = 0 and m = 1, enabling the computation of nonlinear
terms in the EM force.

For multilayer flat chambers, the usual approach is to
compute the beam coupling impedances thanks to a for-
mula valid for an axisymmetric geometry multiplied by
constant “Yokoya” form factors [3, 4], but this has been
shown to fail in the case of non metallic materials such as
ferrite [5] which is expected since Yokoya’s theory relies on
hypotheses that can be wrong for certain materials and/or
certain frequencies. Therefore, we show here how we can
provide a more general theory of the multilayer flat cham-
ber impedance, going beyond the single-layer case [4] or
the double-layer one [6, 7]. We use similar ideas as for a
cylindrical geometry and apply them to an infinitely long
and large flat chamber.

Details on the derivations below can be found in [8, 9].

ELECTROMAGNETIC FIELDS IN A
CYLINDRICAL MULTILAYER CHAMBER

We consider a point-like beam of charge Q travelling at
a speed υ = βc along the axis of an axisymmetric infinitely
long pipe of inner radius b, at the position (r = a 1, θ =
0, s = υt) in cylindrical coordinates. The source charge
density is in frequency domain ( f = ω

2π ), after the usual

Figure 1: Cross section of the cylindrical chamber.

decomposition on azimuthal modes [8, 10]

ρ(r, θ, s;ω) =
∞∑

m=0

ρm =

∞∑

m=0

Q cos(mθ)δ(r − a1)e− jks

πυa1(1 + δm0)
, (1)

where k ≡ ω
υ , δ is the delta function, and δm0 = 1 if m = 0, 0

otherwise. The space is divided into N+1 cylindrical layers
of homogeneous, isotropic and linear media (see Fig. 1),
each denoted by the superscript (p) (0 ≤ p ≤ N). The last
layer goes to infinity.

The macroscopic Maxwell equations in frequency do-
main for the electric and magnetic fields 	E and 	H are writ-
ten [2]

	curl 	H − jω	D = ρmυ	es, 	curl	E + jω	B = 0,

div	D = ρm, div	B = 0, 	D = εc 	E, 	B = μ 	H, (2)

where [11]

εc = ε0ε1 =ε0εb
[
1 − j tanϑE

]
+

σDC

jω (1 + jωτ)
, (3)

μ = μ0μ1 =μ0μr
[
1 − j tanϑM

]
. (4)

In these expressions, ε0 (μ0) is the permittivity (permeabil-
ity) of vacuum, εb the real dielectric constant, μr the real
part of the relative complex permeability, tanϑE (tanϑM)
the dielectric (magnetic) loss tangent, σDC the DC conduc-
tivity and τ the Drude model relaxation time [12].

From Maxwell equations, one gets for each mode m [13]
[
1
r
∂

∂r

(
r
∂

∂r

)
+

1
r2

∂2

∂θ2
+
∂2

∂s2
+ ω2εcμ

]
Es =

1
εc

∂ρm

∂s
+ jωμρmυ,

[
1
r
∂

∂r

(
r
∂

∂r

)
+

1
r2

∂2

∂θ2
+
∂2

∂s2
+ ω2εcμ

]
Hs =0.
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Solutions are sought by separation of variables, in the form
R(r)Θ(θ)S (s). Θ and S are solutions of the harmonic dif-
ferential equation. From the symmetries of the problem [8]

ΘEs (θ) ∝ cos(meθ), S Es (s) ∝ e− jks,

ΘHs (θ) ∝ sin(mhθ), S Hs (s) ∝ e− jks,

where me and mh should be integer multiples of m. REs

(RHs ) is a combination of modified Bessel functions of or-
der me (mh) and argument νr with ν ≡ k

√
1 − β2ε1μ1. From

the boundary conditions between all the layers it can be
first proven [8] that me = mh = m. The longitudinal com-
ponents of the fields are then in each layer (p) [13] (with
	G = Z0 	H = μ0c 	H):

E(p)
s = cos(mθ)e− jks

[
C(p)

Ie Im

(
ν(p)r

)

+C(p)
Ke Km

(
ν(p)r

)]
,

G(p)
s = sin(mθ)e− jks

[
C(p)

Ig Im

(
ν(p)r

)

+C(p)
KgKm

(
ν(p)r

)]
,

where the constants C (p)
Ie , C(p)

Ke , C(p)
Ig and C(p)

Kg depend on m
and ω. The transverse components are found from [13]

E(p)
r =

jk

ν(p)2

⎛⎜⎜⎜⎜⎜⎝
∂E(p)

s

∂r
+
βμ

(p)
1

r
∂G(p)

s

∂θ

⎞⎟⎟⎟⎟⎟⎠ , (5)

E(p)
θ =

jk

ν(p)2

⎛⎜⎜⎜⎜⎝
1
r
∂E(p)

s

∂θ
− βμ(p)

1

∂G(p)
s

∂r

⎞⎟⎟⎟⎟⎠ , (6)

G(p)
r =

jk

ν(p)2

⎛⎜⎜⎜⎜⎜⎝−
βε

(p)
1

r
∂E(p)

s

∂θ
+
∂G(p)

s

∂r

⎞⎟⎟⎟⎟⎟⎠ , (7)

G(p)
θ =

jk

ν(p)2

⎛⎜⎜⎜⎜⎝βε(p)
1

∂E(p)
s

∂r
+

1
r
∂G(p)

s

∂θ

⎞⎟⎟⎟⎟⎠ . (8)

Then, the boundary conditions at r = a1 [10] and the finite-
ness of the fields at r = 0 and r → ∞ give

C(0)
Ke = C(0)

Kg = C(1)
Kg = C(N)

Ie = C(N)
Ig = 0,

C(1)
Ke =

2C
1 + δm0

Im

(
ka1

γ

)
,

C(0)
Ig = C(1)

Ig , C(0)
Ie = C(1)

Ie +C(1)
Ke

Km

(
ka1
γ

)

Im

(
ka1
γ

) , (9)

with γ−2 = 1−β2 andC = jωμ0Q
2πβ2γ2 . Expressing all the bound-

ary conditions at b(p) for 1 ≤ p ≤ N−1, it can be shown [8]
that the constants of one layer are related to those from the
adjacent layer through

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(p+1)
Ie

C(p+1)
Ke

C(p+1)
Ig

C(p+1)
Kg

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Mp+1

p ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(p)
Ie

C(p)
Ke

C(p)
Ig

C(p)
Kg

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Mp+1

p =

[
Pp+1

p Qp+1
p

S p+1
p Rp+1

p

]
, (10)

where Pp+1
p , Qp+1

p , Rp+1
p and S p+1

p are 2 × 2 matrices:

Pp+1
p =

⎡⎢⎢⎢⎢⎢⎢⎣
ε

(p+1)
1

ν(p+1) I
p,p
m K′m

p+1,p − ε
(p)
1

ν(p) K
p+1,p
m I′m

p,p

− ε
(p+1)
1

ν(p+1) I
p,p
m I′m

p+1,p +
ε

(p)
1

ν(p) I
p+1,p
m I′m

p,p

ε
(p+1)
1

ν(p+1) K
p,p
m K′m

p+1,p − ε
(p)
1

ν(p) K
p+1,p
m K′m

p,p

− ε
(p+1)
1

ν(p+1) K
p,p
m I′m

p+1,p +
ε

(p)
1

ν(p) I
p+1,p
m K′m

p,p

⎤⎥⎥⎥⎥⎥⎥⎦ ζ
p+1
p ,

Qp+1
p = χ

p+1
p

[−Ip,p
m Kp+1,p

m −Kp,p
m Kp+1,p

m

Ip,p
m Ip+1,p

m Kp,p
m Ip+1,p

m

]
,

Rp+1
p =

⎡⎢⎢⎢⎢⎢⎢⎣
μ

(p+1)
1

ν(p+1) Ip,p
m K′m

p+1,p − μ
(p)
1

ν(p) Kp+1,p
m I′m

p,p

− μ
(p+1)
1

ν(p+1) Ip,p
m I′m

p+1,p +
μ

(p)
1

ν(p) Ip+1,p
m I′m

p,p

μ
(p+1)
1

ν(p+1) Kp,p
m K′m

p+1,p − μ
(p)
1

ν(p) Kp+1,p
m K′m

p,p

− μ
(p+1)
1

ν(p+1) Kp,p
m I′m

p+1,p +
μ

(p)
1

ν(p) I
p+1,p
m K′m

p,p

⎤⎥⎥⎥⎥⎥⎥⎦ ξ
p+1
p ,

S p+1
p =

ε
(p+1)
1

μ
(p+1)
1

Qp+1
p , (11)

with ζ
p+1
p = −ν(p+1)2

b(p)

ε
(p+1)
1

, χ
p+1
p =

m
(
ν(p)2−ν(p+1)2)

ν(p)2
βε

(p+1)
1

, ξ
p+1
p =

−ν(p+1)2
b(p)

μ
(p+1)
1

, I p+1,p
m = Im

(
ν(p+1)b(p)

)
, I p,p

m = Im

(
ν(p)b(p)

)
and

similar definitions with I ′m, Km and K′m.
Iteratively applying Eq. (10) and solving leads to

C(1)
Ie = −C(1)

KeαTM = −C(1)
Ke

M12M33 −M32M13

M11M33 −M13M31
,

C(1)
Ig = C(1)

KeαTE = C(1)
Ke

M12M31 −M32M11

M11M33 −M13M31
,

C(N)
Ke =M21C

(1)
Ie +M22C

(1)
Ke +M23C

(1)
Ig ,

C(N)
Kg =M41C

(1)
Ie +M42C

(1)
Ke +M43C

(1)
Ig , (12)

whereM ≡ MN
N−1 · MN−1

N−2 · · ·M2
1 is a 4 × 4 matrix, and we

have defined αTM and αTE as in [13]. When summing all
modes m to get the EM response to the initial point-like
source in Eq. (1), we get for the total longitudinal electric
field in the vacuum region

Evac
s,tot = Ce− jks

[
K0

(
k
γ

√
a2

1 + r2 − 2a1r cos θ

)

−2
∞∑

m=0

αTM(m) cos(mθ)
1 + δm0

Im

(
ka1

γ

)
Im

(
kr
γ

)⎤⎥⎥⎥⎥⎥⎦ . (13)

Note that similar matrix formalisms in other theoretical
frameworks have been developped in [14, 15].

ELECTROMAGNETIC FIELDS IN A FLAT
MULTILAYER CHAMBER

Here we also consider a point-like beam of charge Q
travelling at a speed υ = βc at the position (x = 0, y =
y1, s = υt) in cartesian coordinates, along an infinitely long
and large flat chamber of half gap b. We write the source
charge density in frequency domain as

ρ(x, y, s;ω) =
Q
υ
δ(x)δ(y − y1)e− jks, (14)
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Figure 2: Cross section of the flat chamber.

with the same notations as above. Using the horizon-
tal Fourier transform and dropping the

∫ +∞
0

dkx factor, we
want first to compute the response to the source

ρ̃(kx, y, s;ω) =
Q
πυ

cos(kxx)δ(y − y1)e− jks, (15)

which corresponds to a surface charge density on the plane
y = y1. The space is divided into N + M layers parallel
to the y = 0 plane (see Fig. 2), denoted by the superscript
(p) where −M ≤ p ≤ N, p � 0, with the same general
assumptions as in the axisymmetric case.

The macroscopic Maxwell equations in frequency do-
main for the electric and magnetic fields 	E and 	H are writ-
ten as above in Eqs. (2), replacing ρm by ρ̃, εc and μ being
given by Eqs. (3) and (4). One can then get the wave equa-
tions

[
∂2

∂x2
+
∂2

∂y2
+
∂2

∂s2
+ ω2εcμ

]
Es =

1
εc

∂ρ̃

∂s
+ jωμρ̃υ,

[
∂2

∂x2
+
∂2

∂y2
+
∂2

∂s2
+ ω2εcμ

]
Hs = 0.

Solutions are sought in the form X(x)Y(y)S (s). We get
three harmonic differential equations, and from the finite-
ness of X(±∞) and the symmetries of the problem

XEs (x) ∝ cos(kxe x), XHs (x) ∝ sin(kxh x),

S Es (s) ∝ e− jks, S Hs (s) ∝ e− jks.

From the boundary conditions at y = b (p) and y = y1 it can
be shown that kxe = kxh = kx in all the layers [9]. Defining

then ν(p), 	G as above and k(p)
y =

√
k2

x + ν
(p)2, we get the

fields longitudinal components in layer (p):

E(p)
s = cos(kxx)e− jks

[
C(p)

e+ ek(p)
y y + C(p)

e− e−k(p)
y y
]
,

G(p)
s = sin(kxx)e− jks

[
C(p)

g+ ek(p)
y y +C(p)

g− e−k(p)
y y
]
,

where the constants C (p)
e+ , C(p)

e− , C(p)
g+ and C(p)

g− depend on kx

and ω. The transverse components are found from

E(p)
x =

jk

ν(p)2

⎛⎜⎜⎜⎜⎝
∂E(p)

s

∂x
+ βμ

(p)
1

∂G(p)
s

∂y

⎞⎟⎟⎟⎟⎠ , (16)

E(p)
y =

jk

ν(p)2

⎛⎜⎜⎜⎜⎝
∂E(p)

s

∂y
− βμ(p)

1

∂G(p)
s

∂x

⎞⎟⎟⎟⎟⎠ , (17)

G(p)
x =

jk

ν(p)2

⎛⎜⎜⎜⎜⎝−βε(p)
1

∂E(p)
s

∂y
+
∂G(p)

s

∂x

⎞⎟⎟⎟⎟⎠ , (18)

G(p)
y =

jk

ν(p)2

⎛⎜⎜⎜⎜⎝βε(p)
1

∂E(p)
s

∂x
+
∂G(p)

s

∂y

⎞⎟⎟⎟⎟⎠ . (19)

Then the boundary conditions at y = y1 give

C(1)
g+ = C(−1)

g+ , C(1)
g− = C(−1)

g− ,

C(1)
e+ = C(−1)

e+ − Ce−k(1)
y y1

k(1)
y

, C(1)
e− = C(−1)

e− + Cek(1)
y y1

k(1)
y

,

with C defined as in the cylindrical case. We can express
all the boundary conditions at b (p) for 1 ≤ p ≤ N −1 (upper
layers) in a matrix form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(p+1)
e+

C(p+1)
e−

C(p+1)
g+

C(p+1)
g−

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Mp+1

p ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(p)
e+

C(p)
e−

C(p)
g+

C(p)
g−

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Mp+1

p =

[
Pp+1

p Qp+1
p

S p+1
p Rp+1

p

]
, (20)

where Pp+1
p , Qp+1

p , Rp+1
p and S p+1

p are 2 × 2 matrices:

Pp+1
p =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1+ψp+1

p

2 ep,p+1
−

1−ψp+1
p

2

(
ep,p+1
+

)−1

1−ψp+1
p

2 ep,p+1
+

1+ψp+1
p

2

(
ep,p+1
−

)−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

Qp+1
p =

kx

(
ν(p+1)2

ν(p)2 − 1
)

2βk(p+1)
y ε

(p+1)
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ep,p+1
− −

(
ep,p+1
+

)−1

ep,p+1
+

(
ep,p+1
−

)−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Rp+1
p =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1+φp+1

p

2 ep,p+1
−

1−φp+1
p

2

(
ep,p+1
+

)−1

1−φp+1
p

2 ep,p+1
+

1+φp+1
p

2

(
ep,p+1
−

)−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

S p+1
p =

ε
(p+1)
1

μ
(p+1)
1

Qp+1
p , (21)

with

ψ
p+1
p =

ν(p+1)2
k(p)

y ε
(p)
1

ν(p)2k(p+1)
y ε

(p+1)
1

, φ
p+1
p =

ν(p+1)2
k(p)

y μ
(p)
1

ν(p)2k(p+1)
y μ

(p+1)
1

,

ep,p+1
+ = e

(
k(p)

y +k(p+1)
y

)
b(p)

, ep,p+1
− = e

(
k(p)

y −k(p+1)
y

)
b(p)

.

We can write the same relations as in Eqs. (20) to (21) for
the lower layers −M ≤ p ≤ −1 simply by replacing p + 1
with p − 1. Defining thenM ≡ MN

N−1 · MN−1
N−2 · · ·M2

1 ,M′ =
M−M
−M+1 · M−M+1

−M+2 · · ·M−2
−1 , and the 4 × 4 matrix P with the

lines 1 and 3 ofM and 2 and 4 ofM′ in this order, using
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the finiteness of Y(±∞), we solve and find [9]

C(1)
e+ = − C

k(1)
y

[
χ1(kx)ek(1)

y y1 + η1(kx)e−k(1)
y y1

]
,

C(−1)
e− = − C

k(1)
y

[
χ2(kx)ek(1)

y y1 + η2(kx)e−k(1)
y y1

]
, (22)

with (i = 1 or 2)

χi(kx) =
(
P−1

)
i1
M12 +

(
P−1

)
i2
M32,

ηi(kx) =
(
P−1

)
i3
M′21 +

(
P−1

)
i4
M′41. (23)

Note that χi and ηi depend on kx but not on y1. The total
fields due to our initial point-like source are obtained by
integration over kx. Using the polar coordinates (r, θ) in the
(x, y) plane, in the vacuum region we can cast E s into [9]:

Evac
s,tot = Ce− jks

[
K0

(
k
γ

√
x2 + (y − y1)2

)

−4
+∞∑

m,n=0

αmn cos
(
nθ − nπ

2

)

(1 + δm0)(1 + δn0)
Im

(
ky1

γ

)
In

(
kr
γ

)⎤⎥⎥⎥⎥⎥⎥⎦ , (24)

where αmn are obtained by integrals that can be computed
numerically:

αmn =

∫ ∞

0
du cosh (mu) cosh (nu)

[
χ1

(
k
γ

sinh u

)

+(−1)mη1

(
k
γ

sinh u

)
+ (−1)nχ2

(
k
γ

sinh u

)

+(−1)m+nη2

(
k
γ

sinh u

)]
. (25)

The first term in Evac
s,tot is the direct space-charge part, inde-

pendent on the chamber. The other term is the “wall” part
of the fields, as αmn depend only on the chamber properties
and on ω. Those coefficients are the analoguous of αTM(m)
in the cylindrical case.

IMPEDANCES
For both cases, we can now proceed to the impedances

(longitudinal and transverse) for a test particle located at
(x2 = r2 cos θ2, y2 = r2 sin θ2), and generalizing (thanks
to the symmetries of both geometries) the source position
at (x1 = r1 cos θ1, y1 = r1 sin θ1). Using the definitions
from [13] and Eqs. (16) to (19) in vacuum (valid for both
the cylindrical and flat chamber cases):

Z‖ = − 1
Q

∫ L

dsEvac
s,tot(x2, y2, s;ω)e jks,

Zx = − 1
kQ

∫ L

ds
∂Evac

s,tot

∂x
(x2, y2, s;ω)e jks,

Zy = − 1
kQ

∫ L

ds
∂Evac

s,tot

∂y
(x2, y2, s;ω)e jks, (26)

the integration going over the length L of the element.

Direct Space-charge Impedance

From the direct space-charge part of E vac
s,tot, in both the

axisymmetric and flat chamber cases we get the multimode
direct space-charge impedances [8]:

ZSC,direct
‖ = − jLμ0ω

2πβ2γ2
K0

(
kd1,2

γ

)
,

ZSC,direct
x =

jLμ0ω

2πβ2γ3
K1

(
kd1,2

γ

)
x2 − x1

d1,2
,

ZSC,direct
y =

jLμ0ω

2πβ2γ3
K1

(
kd1,2

γ

)
y2 − y1

d1,2
, (27)

with d1,2 =
√

(x1 − x2)2 + (y1 − y2)2 the distance between
the source and the test particles.

Wall Impedance in the Cylindrical Case

We obtain the “wall” impedance [11] (i.e. the impedance
due to the chamber itself, including the indirect space-
charge or perfect conductor part of the fields, but exclud-
ing the direct space-charge isolated above) when writing
Eqs. (26) with Eq. (13) without the direct space-charge. Up
to first order in the source and test positions we get

ZWall
‖ =

jLμ0ω

2πβ2γ2
αTM(0),

ZWall
x =

jLZ0k2

4πβγ4
[αTM(1)x1 + αTM(0)x2] ,

ZWall
y =

jLZ0k2

4πβγ4

[
αTM(1)y1 + αTM(0)y2

]
. (28)

In transverse, in addition to the usual dipolar impedance
(coefficient in front of x1 and y1 in ZWall

x and ZWall
y ), we

find a term proportional to x2 or y2, which is a transverse
quadrupolar impedance [16, 17]. In most classical theories
this term is thought to be 0 in axisymmetric structures; we
find here that in principle it is not the case.
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Figure 3: Dipolar wall impedance/L (i.e. per unit length)
for a round collimator of one or three layers (γ = 479.6,
b = 2mm, σDC,Cu = 5.9 · 107S/m, τCu = 27 fs, σDC,gra =

105S/m, τgra = 0.8 ps, σDC,ss = 106S/m, τss = 0, and in all
layers εb = μr = 1 and ϑE = ϑM = 0).
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In Fig. 3 we show the dipolar wall impedance in the case
of a graphite round collimator, with one layer or three lay-
ers. The difference between the two is mainly due to the
copper coating in the three layers case, and this difference
decreases at low frequencies because the fields penetrate
deep inside the collimator wall.

Wall Impedance in the Flat Chamber Case

Plugging now Eq. (24) into Eqs. (26) we get for the wall
impedances up to first order in the source and test positions

ZWall
‖ =

jLμ0ω

2πβ2γ2
α00,

ZWall
x =

jLZ0k2

4πβγ4
(α02 − α00) (x1 − x2) ,

ZWall
y =

jLZ0k2

4πβγ4

[
2γ
k
α01 + 2α11y1 + (α00 + α02) y2

]
. (29)

Due to the absence of top-bottom symmetry, there is a con-
stant term in the vertical impedance. Also, contrary to usual
ultrarelativistc results, ZWall,quad

x � −ZWall,quad
y .
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Figure 4: Vertical dipolar impedance/L for a three-
layer copper coated graphite flat collimator (parameters in
Fig. 3). In Tsutsui’s model the third layer is replaced by a
perfect conductor and the plates perpendicular to the large
flat jaws are 25cm apart.

In Fig. 4 we have plotted the vertical dipolar impedance
of a copper coated graphite flat collimator, comparing our
results to Tsutsui’s model [18] on a rectangular geometry.
The agreement between the two approaches is very good.

Form Factors Between the Two Geometries

The ratio of the flat chamber impedances to the cylin-
drical ones (longitudinal for F ‖, dipolar term only for the
others) give us form factors that are a frequency and mate-
rial dependent generalization of the Yokoya factors:

F‖ =
α00

αTM(0)
, Fdip

x =
α02 − α00

αTM(1)
, Fdip

y =
2α11

αTM(1)
,

Fquad
x =

α00 − α02

αTM(1)
, Fquad

y =
α00 + α02

αTM(1)
. (30)

In Fig. 5 we have plotted those form factors for the case of
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Figure 5: Form factors in the case of a three-layer copper
coated collimator (see Figs. 3 and 4).

the copper coated collimator already investigated in Figs. 3
and 4. Deviations from the usual Yokoya factors are signif-
icant mainly at high frequencies but can also be seen below
1 MHz, in particular for the longitudinal impedance.

CONCLUSION
Two dimensional models giving the EM fields and

impedance in respectively cylindrical and flat multilayer
chambers have been presented. They rely only on basic
assumptions on the materials (linearity, isotropy and ho-
mogeneity) such that they are valid in principle at any fre-
quency and for any beam velocity. Thanks to the matrix
formalism used, the number of layers in the structure is no
longer an issue.
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