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Abstract

A study of the transverse dynamics of coasting ion
beams with moderate space charge is presented. An ana-
lytic model based on the dispersion relation with a linear
space-charge force is used to describe the impact of space
charge on transverse beam transfer functions (BTFs) and
the stability limits of a beam. The dielectric function ob-
tained in this way is employed to describe the transverse
Schottky spectrum with linear space charge as well. The
difference between space charge and impedance effects is
highlighted. An experiment performed in the heavy ion
synchrotron SIS-18 at GSI to detect space-charge effects
at different beam intensities is explicated. The measured
transverse Schottky spectra, BTFs and stability diagrams
are compared with the analytic model. The space-charge
parameters evaluated from the Schottky and BTF measure-
ments are compared with estimations based on measured
beam parameters. Furthermore, particle tracking simula-
tions demonstrating the impact of collective effects on the
Schottky and BTF diagnostics are presented. The simula-
tion results are used to verify the space-charge model.

INTRODUCTION

GSI’s heavy ion synchrotron SIS-18 will serve as a
booster for the projected FAIR accelerators [1]. For this
purpose, the linear accelerator UNILAC and SIS-18 have
to accelerate beams of unprecedented intensity. The ac-
companying collective effects may degrade the beam qual-
ity and cause particle losses due to instabilities. Therefore
collective effects in ion beams are investigated at GSI.

In SIS-18, where the particle energy is low, space charge
is a major concern as it is known to inhibit Landau damping
of coherent beam instabilities [2, 3]. Furthermore the out-
put of standard diagnostic tools for the accelerator opera-
tion, like Schottky diagnostics and beam transfer functions
(BTFs), has to be interpreted taking into account space-
charge effects. As shown in this report, an analytic model,
related to the well known model for impedances, can be
used to describe the impact of space charge on transverse
Schottky or BTF signals as long as the nonlinear compo-
nents of the self-field can be neglected. It allows also to
retrieve the fractional part of the working point which can-
not be read directly from the signals due to an intensity
dependent distortion. In the next section this model intro-
duced. The following sections an experiment and computer

simulations are described and their output is compared to
the space-charge model. A more detailed discussion of the
topics of this article can be found in Refs. [4, 5, 6].

LINEAR SPACE CHARGE AND BEAM
DIAGNOSTICS

The current fluctuation in a coasting ion beam produces
a longitudinal Spectrum, consisting of a series of bands at
integer multiples, m, of the revolution frequency f0. Due to
the incoherent betatron motion of the particles a fluctuation
of the beam’s dipole moment arises and leads to the trans-
verse Schottky spectrum. At low intensity the side bands
forming this spectrum are located at frequencies [7]

f±
m = f0(m ± Qf ), (1)

where the + refers to the upper side band of the mth lon-
gitudinal band and the − to the corresponding lower side
band. Qf is the fractional part of the working point.

The Schottky bands of a beam devoid of collective ef-
fects reflect the momentum distribution of the beam. The
rms width of the longitudinal Schottky spectrum reads

σm = m|η|f0σp, (2)

where we introduced the slip factor η and the relative mo-
mentum spread σp. The rms width of the side bands de-
pends in addition on the full tune Q and the chromaticity ξ
by virtue of

σ±
m,0 = |m ± (Qfη − ξQ)|f0σp. (3)

Exciting a Schottky side band with noise or a time har-
monic signal and division of the response by the excitation
yields the transverse BTF [8]

r0(z) = ∓
∫ ∞

−∞

P0(z̃)
z − z̃

dz̃ (4)

where z = (f±
m,0 − f)/σ±

m is the normalized frequency,
P0 the Schottky side band under consideration and z the
particle momentum divided by σp. The BTF of a beam
with a Gaussian momentum distribution is the complex er-
ror function [9],

r0(z) = ∓i
√

π

2

[
1 − erf

(
iz√
2

)]
e−z2/2. (5)
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A dipolar transverse impedance Z⊥ deforms the BTF ac-
cording to [8]

r(z) =
r0(z)

1 − (ΔU + iΔV )r0(z)
. (6)

Here we introduced the real parameters ΔU and ΔV which
express the action of the real and imaginary part of the
impedance. They are defined by

ΔU + iΔV =
rpZ

2Nf0

2πZ0AQγσ±
m

(Im(Z⊥) + iRe(Z⊥)), (7)

where N is the particle number, Z the charge number, A
the mass number, Z0 the vacuum impedance and γ the
Lorentz factor. ΔU is linked to the coherent tune shift due
to Im(Z⊥) and ΔV to the growth rate of instability due to
Re(Z⊥). The same parameters can be used to describe the
Schottky side bands of a beam affected by an impedance.
Their shape then follows [7]

P (z) =
P0(z)

|1 − (ΔU + iΔV )r0(z)|2 . (8)

The action of a dipolar impedance is coherent, i.e. rep-
resentable by a force acting on the barycenter of the beam.
On the contrary the space charge as it is incoherent. Com-
paring the equation of motion of a particle in a constant
focusing channel that is perturbed either by an impedance
or space charge gives insight into the relation between the
two effects [9]. The dispersion relation Eq. 6 is found by
averaging of the equations of motion

ẍi + ω2
β,ixi = Kimp〈x〉 (9)

of all particles forming a beam. Kimp is the force acting on
the particle i due to the impedance. The angular brackets
stand for the average over all particles.

Under the influence of a linear space-charge force, the
equation of motion assumes the form

ẍi + ω2
β,ixi = Ksc(x − 〈x〉) (10)

from which follows

ẍi + (ωβ,i − Δωsc)2xi = Ksc〈x〉 (11)

in first order. The frequency shift due to space charge is
given by Ksc/(2ωβ). The resulting space-charge tune-shift
in the vertical plane in a coasting beam reads [10]

ΔQsc,y =
rpZ

2Ng

πβ2γ3A(εy +
√

εyεxβx/βy)
, (12)

where βy is the mean vertical beta function, εy the full ver-
tical emittance. βx and εx are the corresponding param-
eters in the horizontal plane. g is the form factor which
depends on the transverse particle distribution, being 1 for
a KV beam. Gaussian beams are approximated with g = 2

and using the 2σ emittances. We define the space-charge
parameter for a given lower or upper side band as

ΔUsc =
ΔQscf0

σ±
m

. (13)

Formally Eq. 11 differs from Eq. 9 only by the shift of
ωβ,i. It can be shown that this frequency shift translates
into a shift of the argument z towards [3, 4, 5]

zsc = z ∓ ΔUsc (14)

on the right hand side of Eq. 6 and Eq. 8. Combining the
impact of an impedance and space charge results in

r(z) =
r0(zsc)

1 − (ΔU + iΔV − ΔUsc)r0(zsc)
(15)

and

P (z) =
P0(zsc)

|1 − (ΔU + iΔV − ΔUsc)r0(zsc)|2 . (16)

These two equations indicate that ΔUsc causes a mirror
inverted distortion compared to ΔU given the same sign.
Only space charge shifts P0 and r0 — this is a qualitative
difference to impedance effects. Treating space charge like
an impedance (with opposite sign), which is often done, at-
tributes the signal an incorrect position in frequency space.

Taking the inverse of Eq. 15,

1
r(z)

= U(zsc) + iV (zsc) (17)

=
1

r0(zsc)
+ ΔUsc − ΔU − iΔV, (18)

we obtain the stability diagram. As the stability diagram
is a parametric plot of U(zsc) and V (zsc) the distinct fre-
quency shift due to space charge is not visible in this repre-
sentation. What remains is a shift of the stability diagram
like the one caused by an imaginary impedance.

MEASUREMENT OF SPACE CHARGE

A dedicated experiment for the observation of space-
charge effects was accomplished in SIS-18. For this pur-
pose a 40Ar18+ beam was stored for several seconds at
the injection energy before acceleration. This time was
needed to improve the statistics of the Schottky measure-
ments and to provide enough time for the frequency sweep
when BTFs were measured. The injection energy of SIS-18
is 11.4 MeV/u, corresponding to γ = 1.012 or β = 0.15.
The associated revolution frequency is f0 = 214 kHz. The
number of stored particles was varied from 2.5 × 108 to
1.1× 1010 ions by adjusting the beam current in UNILAC.

A system for Schottky and BTF diagnostics, developed
for the experimental storage ring (ESR) at GSI, was repli-
cated for SIS-18 [11]. For the BTF detection a strip-line
kicker transmits the exciting signal from a network ana-
lyzer to the beam. The signal of the beam is picked up
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by a plate capacitor and acquired by the network analyzer.
Schottky spectra are obtained connecting a spectrum ana-
lyzer to the pick-up. The sensitivity of the diagnostic hard-
ware goes down at low frequencies. On the other hand, at
high frequencies the interaction parameters become small
as σ±

m increases. A frequency of about 10 MHz, corre-
sponding to m = 50, was used as a compromise. The
measurements were done in the vertical plane where the
smaller gap between the detector plates promised a better
signal to noise ratio.

Longitudinal Schottky spectra were recorded to provide
a reference for σp and f0. Though they are contained in
the transverse spectra and BTFs, in practice it is easier to
extract Qf and ΔQsc with the other parameters known. It
turned out that f0 and σp depend on the intensity. Collec-
tive effects in UNILAC and the transfer channel leading to
SIS-18 are held responsible for this behavior, but the inves-
tigation of this issue is ongoing.

In order to estimate the expected collective effects, the
beam current, providing N , was detected, as well, with a
transformer. Beam profiles were measured to determine
the emittance. For this purpose an ionization profile mon-
itor [12] (IPM) was employed. From the measured pro-
files the transverse emittances were calculated using εy =
4a2

y/βy with βy computed with a beam optics code. In
the IPM an electrostatic field transversally accelerates rest
gas molecules that were ionized in collisions with beam
particles. These molecules hit the so called micro channel
plated which in turn emit a large number of electrons which
are collected on a wire array.

The measured profiles are approximately Gaussian
shaped. The resulting emittance did not change signif-
icantly during the experiment and amounted to εy ≈
4.4 mm mrad and εx ≈ 6.0 mm mrad. Due to the differ-
ent mean beta functions in the two planes, Eq. 12 could be
approximated by

ΔQsc,y =
rpZ

2Ng

2πβ2γ3Aεy
(19)

with an error of a few percent.
With N , εy and σp one can estimate ΔQsc and ΔUsc.

Table 1 lists these estimations with the measured beam pa-
rameters. Also ΔU and ΔV were estimated for a perfectly
conducting beam pipe and with the calculated impedances
of the extraction kickers and the resistive wall. Both pa-
rameters are negligible compared to ΔUsc and therefore
are not considered in the following discussion.

The lower Schottky side bands of m = 50 measured at
three intensities are displayed in Fig. 1. At low intensity
the band is symmetric and well described by a Gaussian
function. With increasing particle number the symmetry is
lost and the band becomes narrower, despite the increasing
momentum spread. Equation 16 was fitted to the data with
three parameters of freedom: Amplitude, f±

m and ΔUsc. σp

was set to the value found in the longitudinal measurement.
A very good agreement with the data is observed up to the
maximal beam intensity.

Table 1: Measured particle numbers and momentum
spreads together with the corresponding tune shift and
space-charge parameter.

N / 109 δp/p / 10−4 ΔQsc,est ΔUsc,est

0.25 2.5 0.001 0.09
0.45 2.8 0.002 0.15
0.90 4.2 0.004 0.19
2.0 5.6 0.010 0.32
3.9 6.7 0.019 0.53
7. 7.6 0.034 0.84

10. 7.8 0.048 1.2
11. 7.8 0.053 1.3

10.61 10.62 10.63 10.64
f [MHz]

0

2
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8

P
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N=4.5 × 108 
N=3.9 × 109 
N=1.1 × 1010

Fit

Figure 1: Measured lower Schottky bands at different beam
intensities with fitted model. The shift of f0 is compensated
in this figure.

The BTF data were analyzed fitting Eq. 15 by the ampli-
tude and the phase. Both the data and the fit are shown in
Fig. 2. The corresponding stability diagrams are visualized
in Fig. 3. At low and moderate intensity the fitted curves
agree well with the data. At high intensity, however, only
a partial agreement can be stated. In particular the sharp
peak in the maximum is not well reproduced. The stabil-
ity diagrams are evidently shifted and keep their shape, as
expected. With increasing beam intensity the noise on the
stability diagram grows.

The space-charge parameters from the estimation,
ΔUsc,est, and from the fit, ΔUsc,shape, are plotted in
Fig. 4. Taking advantage of the known low intensity tune,
Qf,0, there is another way to determine the space-charge
parameter—as long as impedances are negligible. Using
Eq. 13 we find

ΔUsc,shift =
Qf,0 − Qf

σ±
m

. (20)

ΔUsc,shift and ΔUsc,shape coincide if the measurement is
consistent, which is confirmed by the experimental data.
The BTF data indicate slightly larger values, but due to the
better agreement between the Schottky data and the model,
the latter seem to be more reliable. A precise explanation
for this difference was not found. It is reasonable, though,
to assume that high intensity beams were close to a coher-
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Figure 2: BTFs measured with the same settings as the
Schottky bands in Fig. 1.
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Figure 3: Measured stability diagrams. The color code is
the same as in the previous figures.

ent instability. In this case the response to the excitation
may become nonlinear so that a base assumption of the
BTF theory is violated.

ΔUsc,est, however, is significantly smaller. The discrep-
ancy exceeds the estimated measuring uncertainty, which
is discussed in Ref. [6]. A possible error of the calculated
beta function at the location of the IPM is not included
in the error estimation, though. As the beta function was
not measured, a systematic deviation of the assumed emit-
tances could occur and explain the observed deviation. It
was tried to model the impact of a nonlinear amplification
of the micro channel plates in the IPM, since their perfor-
mance degrades with time. However, this approach did not
explain the observations, and was itself affected with large
uncertainties.

Employing Eq. ??, ΔUsc one can calculate ΔQsc. Even
the low intensity tune can be extracted from a high intensity
measurement using Qf,0 = Qf + ΔUscσ

±
m. The expected
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Figure 4: Measured and estimated space-charge parame-
ters.

linear decrease of Qf with increasing intensity and the con-
sistency with the constant Qf,0 are well confirmed by the
experimental data.

SIMULATION RESULTS

Particle tracking simulations were performed in a con-
stant focusing channel with a code developed for this pur-
pose. The fluctuation of the macro-particle density in a ran-
dom distribution yields a fluctuating current dipole moment
whose Fourier transform is the transverse Schottky spec-
trum. In order to simulate a BTF, the side band is excited
with white noise.

KV and Gaussian particle distributions were simulated
up to ΔUsc = 2. Equation 16 and Eq. 15, respectively,
were fitted to the simulation output. An excellent agree-
ment of the fit parameters with the simulation settings, as
well as between the data and the fitted curve, was found
for all settings. ΔUsc from the fit differed by maximal 4 %
from the expected values only. No significant deviations
between KV and Gaussian beams were found. In Fig. 5 the
simulation results with ΔUsc = 2 are shown.

The impact of an imaginary impedance was studied as
well by means of numerical simulations. Going beyond the
scope of the feasible in our experiments, the impact of an
imaginary impedance was compared to the one of space
charge by virtue of numerical simulations. One showcase
example can be seen in Fig. 6. These simulations were
done with ΔU = 2 and either ΔUsc = 0 or ΔUsc = 2, as
well. In the first case, the deformation is mirror inverted
with respect to the space-charge effect and the signal is
shifted considerably farther. In the second case, the de-
formations cancel each other and the signal is shifted only.
All predictions of the linear space-charge model are well
confirmed by the simulations.
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Figure 5: Simulation results of a beam with Gaussian trans-
verse profile and ΔUsc = 2. On top a Schottky band (left)
and the BTF amplitude are shown. On bottom follow the
BTF phase and the stability diagram (right).

1.03 1.04 1.05 1.06
f [MHz]

0

1

2

3

4

5

A
m

pl
itu

de
 [a

. u
.]

ΔUsc=0, ΔU=0
ΔUsc=2, ΔU=0

ΔUsc=0, ΔU=2
ΔUsc=2, ΔU=2

Figure 6: Simulated BTF amplitude with different ΔUsc

and ΔU settings. The dashes lines represent the fitted
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CONCLUSIONS

A linear space-charge model was discussed and em-
ployed to describe the transverse Schottky spectra and
BTFs of intense coasting beams. The data from experi-
ments in SIS18 partially agree well with this model, but
some discrepancies were noticed. Using the model, Qf ,
ΔQsc and the ΔUsc were determined from the measured
data. Computer simulations were accomplished to study
the space charge and impedance effects. The simulation
results are very well described by the model. Within the
limits of the linear approximation the model proved to be
useful. For daily use the reliability of measurements needs
improvements. For tune measurements a higher frequency
with smaller ΔUsc is preferred.
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