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Abstract

The transverse impedance of kicker magnets is consid-
ered to be one of the main beam instability sources in the
projected SIS-100 at FAIR and also in the SPS at CERN.
The longitudinal impedance can contribute to the heat load,
which is especially a concern in the cold sections of SIS-
100. In the high frequency range, time domain codes are
commercially available to calculate the impedance but they
become inapplicable at medium and low frequencies. We
present the ongoing work of developing a Finite Integra-
tion (FIT) solver in frequency domain which is based on
the Parallel and Extensible Toolkit for Scientific comput-
ing (PETSc) framework in C++. The code is applied to an
inductive insert used to compensate the longitudinal space
charge impedance in low energy machines. Another ap-
plication focuses on the transverse impedance contribution
of a ferrite kicker with inductively coupled pulse forming
network (PFN) and frequency dependent complex material
permeability. In future we plan to confirm our simulations
with dedicated wire or coil bench measurements.

INTRODUCTION

For the SIS100 synchrotron which will be built in the
framework of the FAIR project, especially the coasting
beam and the high intensity proton bunch are suscep-
tible to impedance driven coherent transverse instabili-
ties. Since SIS100 will contain ferrite kickers in cryo-
genic (< 20 K) sections, the beam induced heat load (as
also recently reported on LHC-kickers) is an important is-
sue. In the relevant frequency range of several kHz up
to the beam pipe cutoff, impedance sources are mainly
given by the thin stainless steel beam pipe [1] and ferrite
components. Broadband cavities dominate the longitudinal
impedance [2]. Slightly below the cutoff frequency, cross-
section changes such as collimators might have an impact.
Additionally to the necessary ferrite kickers and their sup-
ply networks, also an inductive ferrite insertion to com-
pensate the negative inductive longitudinal space charge
impedance has been proposed. We will focus on this insert
which serves as a test case for the code discussed in this
paper. Nonetheless, the main application of the code will
be the transverse impedance of SIS100 kicker modules.

Usually coupling impedances are defined as the Fourier
transform of the wake function which can be calculated by
time domain (TD) codes such as CST Particle Studio [3].

∗Work supported by GSI
#u.niedermayer@gsi.de

At low frequencies, which become more important for
large hadron synchrotrons, this technique is inapplicable
due to the necessary large wake length (frequency resolu-
tion limitation by Küpfmüller’s uncertainty principle [4]).

The following will give a definition of the coupling
impedances directly in frequency domain (FD). Underlined
symbols emphasize complex variables. This also serves
to distinguish between TD and FD. The beam with total
charge q in a synchrotron is modeled as a disc with radius
a of uniform surface charge density σ traveling with veloc-
ity v. The transverse displacement dx of the beam (i.e. a
coherent dipole oscillation) is approximated to first order
by

σ(%, ϕ) ≈ q

πa2
[Θ(a− %) + δ(a− %)dx cosϕ] (1)

where Θ is the unit step and δ is its generalized derivative.
The beam current density in frequency domain is

Js,z(%, ϕ, z;ω) =

∫ ∞
−∞

vσ(%, ϕ)δ(z − vt)e−iωtdt (2)

= σ(%, ϕ)e−iωz/v =: J‖ + J⊥ (3)

where J‖ and J⊥ are the monopole and dipole compo-
nents, as in Eq. (1), respectively. The coherent force due
to beam induced electromagnetic fields acting back on the
beam is described by the coupling impedance [5]

Z‖(ω) = − 1

q2

∫
beam

~E · ~J
∗
‖ dV (4)

Z⊥,x(ω) = − v

(qdx)2ω

∫
beam

~E · ~J
∗
⊥dV. (5)

The electric field ~E is to be calculated from Maxwell’s
equations. Instead of the cosine distribution for dipolar ex-
citation in Eq. (1) one can also use a twin wire approxima-
tion, as described in [6].

INDUCTIVE INSERT
The longitudinal space charge impedance [7]

ZSC‖ (ω, β) = −iω µ0gl

4πβ2γ2
(6)

constitutes a major fraction of the imaginary part of the
longitudinal impedance in SIS100. This leads to a RF-
potential-well distortion and to a net decrease of the RF-
voltage (decrease of bucket height). We will discuss a tubu-
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Figure 1: Tubular ferrite (µ = µ
r
µ0 , µ

r
= µ′r−iµ′′r ) insert

with radii a = 40 mm, b = 100 mm and length l = 1 m in
perfectly conducting (PEC) background.

lar inductive insert (see Fig. 1) which is supposed to com-
pensate the negative inductance described by Eq. (6). Dif-
ferent 2D analytical simplifications with either beam radius
equal tube inner radius (validity see [8]) or pencil beam are
considered.

Magneto-Statics
In this most simplified case the beam is considered as

constant DC current. One obtains from the flux to current
ratio

ZMS
‖ (ω) = iωL = iω

µl

2π
ln(b/a) (7)

independent of the beam’s velocity.

Magneto-Quasi-Statics
The standard formalism to calculate the longitudinal

space charge impedance [7] is generalized to ferrite pipes.
With g0 = 1 + 2 log(b/a) and g

r
= (1 + 2µ

r
log(b/a))/g0

one obtains

ZMQS
‖ (ω, β) = −iωµ0g0l

4πβ2

(
1 − g

r
+
g
r

γ2

)
. (8)

which reduces to the well known SC impedance Eq. (6) for
µ = µ0. For simplicity, the vacuum layer between beam
and ferrite has been omitted.

Fullwave Calculation
For the fullwave calculation the fields are split into

source [5]

ESz (%, ω) = iq
µ0

2π

ω

β2γ2
K0(kvac

% %) (9)

HS
ϕ(%, ω) = q

1

2πc0

ω

βγ
K1(kvac

% %) (10)

and scattered (decelerating) parts

Edec
z (%, ω) = AJ0(kvac

% %) (11)

in vacuum with kvac% = ω/(βγc). In ferrite one has

kf% = kvac%

√
(µ
r
− 1)β2γ2 − 1 (12)

and the fields are

Ef
z(%, ω) = B

(
H

(1)
0 (kf

%%) −
H

(1)
0 (kf

%b)

H
(2)
0 (kf

%b)
H

(2)
0 (kf

%%)

)

H f
ϕ(%, ω) =

1

iωµ0(µ
r
− β−2)

∂%E
f
z(%, ω). (13)

These equations can be solved for A and B by matching
the fields at the ferrite boundary as

ESz (a, ω) + Edec
z (a, ω) = Ef

z(a, ω) (14)

HS
ϕ(a, ω) = H f

ϕ(a, ω) (15)

The solution is obtained symbolically by Mathematica [9]
and displayed in Fig 3. Note that only the MQS ap-
proach includes the negligibly small part of the beam’s
space charge impedance within the insert.

NUMERICAL APPROACH IN FD
In this section we briefly describe our numerical ap-

proach to impedance calculation using the Finite Integra-
tion Technique(FIT). The monopolar excitation current is
given as a discretization of (3) with constant σ as

__

j
mono

e,z
(iz) =

∫
Ãz

~J · d ~A = qe−iωzi/v (16)

where iz is the z-index and zi is its z coordinate. The dipo-
lar excitation current is modeled by the twin wire dipole
approximation as

__

j
dip

e,z
(iz) =

__

j
mono

e,z
(x = −dx) −

__

j
mono

e,z
(x = +dx). (17)

From the discrete Maxwell equations one obtains the wave
equation (see [10] and references therein)(

C̃Mµ−1C + iωMκ − ω2Mε

)
_e = −iω

__

j
e

(18)

subject to PEC boundary conditions in x and y direc-
tion and phase corrected periodic boundary conditions (see
[10]) in z direction. Note that the beam’s charge is implic-
itly included by the continuity equation. First, the system
is symmetrically rewritten with _e = M

−1/2
ε

_e′ as

(M−1/2ε C̃Mµ−1CM−1/2ε + iωM−1ε Mκ − ω2I)_e′

= −iωM−1/2ε

__

j
e

(19)

which we will abbreviate by A_e′ = b. For easier numerical
treatment a Helmholtz split _e = _eg + _ec with C_eg = 0
and S_ec = 0 (see also[11]) is performed. The static part of
the field is solved by Poisson’s equation

S̃MεS̃
HΦ =

i

ω
S̃

__

j
e
, _eg = −S̃HΦ (20)

where the right hand side is the charge in dual volumes
obtained by the continuity equation. Equation (19) reads
then

A_e′c = −iωM−1/2ε

__

j
e

+ ω2M1/2
ε

_eg (21)

with a divergence-free right hand side. This split reduces
the iterations of PETSc’s SSOR preconditioned GMRES
solver [12] tremendously while the cost for solving Eq. (20)
is negligibly small. The integral in the impedance defini-
tions in Eqs. (4) and (5) is evaluated by the functional

Z(_e(ω)) = _e ·
__

j
∗
e

(22)

with normalized magnitude of the current (q = 1 As).
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Software

Figure 2: Implementation

The CAD constructions and the mesh originate from
CST EMS2011 [3]. It is imported via Matlab [13] where
the material operators are disassembled in order to ob-
tain the staircase material vectors. This allows to rescale
the material parameters frequency dependently within the
main program. Mesh data, material vectors and topologi-
cal (PEC) information are transferred to the C++ main pro-
gram. The actual high performance computations are car-
ried out by the PETSc 3.2 [12] package which provides a
variety of matrix structures, preconditioners and solvers for
either real or complex linear systems. After computation,
the fields can be visualized by transferring results back to
Matlab and CST EMS2011 (see Fig. 2).

PRELIMINARY RESULTS

A comparison between the different analytical and nu-
merical approaches can be seen in Fig. 3. For simplicity,
µ
r

= 1000−100iwas chosen independent of the frequency
such that structural properties become better visible. As
desired, the low frequency part of the insert impedance can
compensate the space charge impedance of the whole ring.

Figure 3: Longitudinal impedance for the inductive insert
in Fig. 1 for β = 0.3. The resonances inaccurately dis-
played in the upper plot are enlarged in the lower one.

As a rule of thumb one should think factor 1000 shorter
than the ring and factor 1000 higher permeability than vac-
uum compensates. Nonetheless, a ruinous disadvantage are
resonances which occur at higher frequencies (see lower
part of Fig. 3). These resonances, together with the real
part of µ

r
cause a very high real part of Z‖ triggering the

’microwave instability’ (see also [14]).
The rather poor accuracy of the numerical calculation

originates mainly from insufficient mesh resolution (7000
staircase cells). Note also that the 3D numerical calculation
contains finite length effects which are not represented in
the analytical models. The numerical calculation of the real
part will be presented in the near future.

CURRENT STATUS AND OUTLOOK
The current status of our code is that without ferrite ma-

terial up to 106 mesh cells can be simulated. The high
permeability of ferrite deteriorates the condition number of
the system matrix tremendously such that iterative solvers
do not always converge. In this case for small number
of mesh cells direct solvers can be employed. In future
we will address the transverse impedance of SIS-100 kick-
ers. Besides the ferrite itself, also the kicker pulse forming
network (PFN) contributes to the dipolar impedance. Its
frequency dependent impedance [15] will be included as
lumped element in the simulation. For the confirmation of
the obtained results, bench measurements are outlined.

REFERENCES
[1] U. Niedermayer and O. Boine-Frankenheim, Analytical and

numerical calculations of resistive wall impedances for thin
beam pipe structures at low frequencies, NIM A 687, 2012.

[2] P. Spiller et al., FAIR TDR SIS100, 2008.

[3] CST Studio Suite R©, www.cst.com
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