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Abstract

Although there are several publicly available algorithms

to model the behavior of natural systems such as the N-

body system, limited computing power hinders the attempt

to simulate them efficiently. With the improvement of high

performance computing, scientists will be able to run simu-

lations at an unprecedented scale in the future. Therefore, it

is necessary to develop new algorithms and data structures

to harness the power of high performance computing. In this

paper we show a newly developed code, particles’ high order

adaptive dynamics (PHAD), to serve future computing de-

mands. We use Fast Multipole Method (FMM) to calculate

the interactions among charged particles. We use the Strang

splitting technique to reduce the number of FMM calls and

enhance the efficiency. Picard iterations-based novel integra-

tors are employed to achieve very high accuracies. Electron

cooling in the proposed Electron Ion Collider (EIC) has been

identified as a potential testing environment for PHAD.

INTRODUCTION

Computer simulations are heavily used in designing par-

ticle accelerators and the efficiency and accuracy of them

can be improved with ever changing computational power.

Clearly, this demands dramatic improvements on existing

code for beam dynamics. In this paper we present a new code

developed using novel ideas to significantly divert the exist-

ing trend and electron cooling will be one of the potential

candidates of its application.

The densely packed particles in a beam, which can be

considered as our N-body system, experience two types of

forces, long range and short range. The long-range forces are

the Coulomb forces and the short-range forces are Coulomb

collisions. Also, the motion of the particles in the beam

should be taken into consideration for precise modeling and

simulation of the beam. Therefore, our code enables to

calculate Coulomb interactions and study the changes in the

particle configuration with time.

ALGORITHM

In an N-body system each object continuously interacts

with every other object in the system. The direct computa-

tion or pairwise calculation of such interactions gives the

exact results and needs a computational complexity in the

order of N2. For very large N, this method quickly becomes

untenable. Using some approximate methods, such as the

basis function methods, particle-mesh methods, and hierar-

chical subdivision methods, can circumvent this drawback.

The challenge is to mitigate the approximation artifacts. The

hierarchical (or recursive) subdivision method has three dis-

tinct flavors: tree, cluster and fast multipole method and the

algorithm used to develop our code belongs to the hierar-

chical fast multipole method (FMM). In FMM particles are

confined to spatially bound cells and the interaction between

cells are computed. Therefore, the force experienced by any

particle inside a cell can be approximated to the addition of

Taylor expansions calculated from the multipole expansion

of the far away cells. Also, FMM can calculate interactions

among N- bodies while retaining accuracy because its com-

putational time typically grows linearly with the number of

bodies.

Again, FMM has different versions and they vary with

the dimensionality and the type of particle distribution. The

code described in this paper uses the 3D adaptive FMM; it is

well suited for any arbitrary distribution [1, 2]. Even though

FMM is considered as an approximation to get the solution

of the Poisson equation, its accuracy can be set a priori and

can be tuned to get even more accurate results than the direct

summation method.

In order to study the beam propagation as time progresses,

we need to split the total time into smaller steps and exam-

ine the beam dynamics after each small time step. A fixed

time step size is not a good choice to study the behavior

of the beam. For example, to study the close encounters

of particles the step size should be adjustable. Hence, we

used a variable order Picard iteration-based integrator. It is

an integrator with dense output and flexible for automatic

adjustment of the optimal order and time step to achieve a

prescribed accuracy with a minimum computational cost.

The implementation of the automatic step size and order

selection is not yet completed. Therefore, our code is tested

only for the variable order with the fixed time step size [3,4].

To further enhance the computational throughput, we use

Strang splitting [5]. Strang splitting is a second order accu-

rate operator splitting method. This method splits a com-

plicated problem into a few simpler parts and solves them

separately and composes all solutions to get the final solu-

tion of the problem. Two types of forces—strong forces that

change rapidly and smooth forces that vary slowly, act upon

each particle in a beam. When the particles get closer they

experience a very strong force and undergo rapid changes.

This type of behavior occurs in the nearby region or the

neighborhood of an evaluation point. Therefore, small time

steps are needed to model the strong forces and it is possible

each particle in the close encounter to have its own time

step size. The influence caused by the far away particles

can be considered as the mean force exerted by them and
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it varies slowly. In this simulation we work on three time

scales. The first time scale is the total time, or the entire

simulation time. The second scale is created by dividing

the first to equal step sizes and used to study the motion of

particles due to slowly varying forces. The third scale is the

subdivision of the second and as explained above it can vary

from particle to particle. Since the FMM is the most time

consuming process we need to minimize number of FMM

calls. This led us to call FMM only in the second time scale,

i.e. in the case of slowly varying forces.

There are two types of frames involved in this problem:

the lab frame and the beam frame. In fact, under the influence

of self-fields the motion of the particles in the beam frame

is nonrelativistic and therefore the forces are electrostatic.

The external electric and magnetic fields are given in the

lab frame. Since the Lorentz force due to the external fields

and the self-fields determine the beam dynamics, we need

to consider the collective effects of the fields. There are two

choices: calculate the forces due to self-fields and convert

them into the lab frame or calculate the forces due to the

external fields and convert them to the beam frame. As the

intention is to study the particles’ behavior in the lab frame,

the straightforward approach is to transform the fields from

the beam frame to the lab frame, and solve the equations of

the motion in the lab frame.

The immediate testing environment of this code is the

electron cooling section in the proposed Electron Ion Col-

lider (EIC). Therefore, our code should work for the design

parameters suggested in the Electron Ion Collider acceler-

ator design [6]. The cooling device will be installed in the

pre-booster ring and the collider ring of the EIC and each

part of the collider carries ions with distinct energy ranges.

The kinetic energy of the ions injected into the pre-booster

ring is about 280 MeV and they are accelerated to 3 GeV,

while the kinetic energy of ions during the collision in the

collider ring varies from 60 to 100 GeV. The lowest gamma

value in the pre-booster is about 1.3. In the collider ring the

corresponding gamma values vary from 60 to 107.

PERFORMANCE ANALYSIS

In a previous paper [7], using the same particle distribu-

tion for both source points and target points, we have shown

that the results produced from PHAD and N-body (SA) codes

are in good agreement. We obtained those results for the

case where points are normally distributed and they move

with nonrelativistic speeds. Hence, the initial momenta, px,

py, pz, are all near-zero. In this paper we introduce relativis-

tic corrections to both our codes, PHAD and SA. For details

on these codes, please see [7]. The relativistic gamma value

is reflected in the initial momentum in the z direction, pz, by

assigning the corresponding momentum value to pz while

px and py are still near-zero.

As indicated in the introduction, we have identified that

the lowest gamma value is 1.3 and the highest is 100. We

tested our code for three specific gamma values, 1.3, 60

and 1000. Figure 1 shows the comparison of trajectories of

PHAD with those of the N-body code for gamma value 1.3

when each particle carries a unit positive charge and a unit

mass. The total time is 0.05 with time step size of 0.001.

N-body, delt=0.001, Total time=0.05, γ=1.3
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Figure 1: Trajectories of N-body and PHAD for the particles

with unit mass and γ=1.3.

Figure 2 shows the comparison of trajectories of PHAD

with those of N-body code for gamma value of 1.3 when each

particle carries a unit positive charge and different masses

ranging from 2 to 99. The total time is 0.05 with time step

size of 0.001.
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Figure 2: Trajectories of N-body and PHAD for the particles

with different masses and γ=1.3.

Table 1: Spread in x, y, z after 50 Time Steps of Size 100

γ Spread in x Spread in y Spread in z

1.3 1.07 × 10−2 1.07 × 10−2 3194.85

1000 6.69 × 10−4 5.67 × 10−4 5000.00

After a single time step of 100 the coordinates of points

(y vs x and z vs x) with relativistic gamma values 1.3 and

1000 are shown in Figures 3 and 4, respectively. Each point

carries a unit charge and a unit mass. We choose γ=1000

due to the fact that in the ultra-relativistic limit the space

charge effect vanishes, so it is a straightforward sanity check

of our codes. After 50 time steps of step size 100, the spread

in x, y, and z are shown in Table 1. The particles with the

high gamma value of 1000 are displaced more along the z
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Figure 3: γ=1.3
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Figure 4: γ=1000

direction than those with low gamma value of 1.3. This is

can be attributed to the fact that our initial configuration has

a low/high momentum corresponding to a low/high gamma

value. As expected, the space charge effect diminishes at

higher energies (or higher gamma), and when γ=1000 points

get closer to each other compared to those for γ=1.3. The

values in Table 1 shows that both x and y spread become

smaller for γ=1000.

We are still investigating if the discrepancies observed in

the transverse momentum figure (Figure 5) are within the ex-

pected numerical errors or a still uncovered coding bug. The

data structuring part of the code is implemented in C++. Pi-

card iteration based integrator and calculations of Coulomb

interactions are implemented in COSY INFINITY [8].

SUMMARY

In order to achieve highly accurate results efficiently we

have to exploit the high processing power of computers

through new approaches of modelling and simulations of

N-body systems. In this paper we presented a new code

developed to model and simulate a particle beam efficiently

while maintaining high accuracy. Three key measures are
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Figure 5: Transverse momenta (px and py) for γ=1.3

taken to ameliorate the challenges: Fast multipole method

to calculate Coulomb interactions, Picard Integrator with

dense output to study close encounters with small time steps,

Strang splitting to improve speed up reducing the number

of FMM calls.

The approximation errors due to FMM and the estimation

errors due to Strang splitting are unavoidable. We showed
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that PHAD and SA give similar results and they indicate

that influence of the errors incurred is negligible. The drawn

conclusions can be extended for any arbitrary distributions,

any charge and mass magnitudes and for relativistic or non-

relativistic particle motions.
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