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Abstract
The IOTA test accelerator is under construction at FNAL

to study a novel method of advancing the intensity frontier

in storage rings: nonlinear integrable optics. For particles

at the design momentum, the lattice has two invariants and

the dynamics is integrable. In the ideal single-particle two-

dimensional case, this yields bounded, regular orbits with

extremely large tune spreads. Off-momentum effects such

as dispersion and chromaticity, and collective effects such

as direct space charge, break the integrability. We discuss

the origin of this broken integrability for both single- and

many-particle effects, and present simulation results for the

IOTA lattice used as a high intensity proton storage ring.

INTRODUCTION
Future generations of intense, multi-megawatt accelera-

tors have applications for discovery science as drivers for

spallation sources, neutrino physics, and the next gener-

ation of high energy colliders. Such intense beams are

prone to collective instabilities including, but not limited

to: space charge driven beam halo, resistive wall instabil-

ity, head-tail instability, and the various beam break-up in-

stabilities. The physical origin of these instabilities is the

constant transverse tunes in linear strong-focusing lattices.

In the SNS accumulator ring, for example, it was found [

that these instabilities did not appear for the natural chro-

maticity of the lattice, which was very large. It is then nat-

ural to conclude that the large tune spreads associated with

these chromaticities are desirable for mitigating such insta-

bilities.

The trouble with this is that the large chromaticities in

the linear lattices will span an entire integer or more of tune

space, which will cross many single-particle resonances. A

more robust method is required to obtain large tune spreads

without losing dynamic aperture due to single-particle dy-

namics. Enter the nonlinear integrable optics designed by

Danilov and Nagaitsev [

spreads while keeping the orbits regular. This work has

already shown promise in preventing space charge driven

beam halo [

invariants change in two real-machine situations: energy

spread and space charge.

In the next section, we discuss how energy spread in

coasting beams breaks the single-particle integrability, and

how we may design the lattice to restore that integrability.

How direct space charge changes a matched distribution of
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the invariants is explored in the following section. We con-

clude with preliminary simulations of using the integrable

optics to prevent resistive wall instability in an intense pro-

ton ring.

OFF-MOMENTUM EFFECTS:
CHROMATICITY & DISPERSION

The work in [

ticle dynamics – transverse oscillations with no energy

spread. In real intense accelerators energy spread and the

associated chromaticity, as well as the dispersion in the lat-

tice, will modify the integrable Hamiltonian. Before asking

the nonlinear integrable lattices to mitigate intensity-driven

effects, it is important to restore the integrability which

makes it so robust.

As we show in [

designed for integrable optics that includes off-momentum

effects and nonlinear elements such as sextupoles and oc-

tupoles yields a correction to the Hamiltonian in [

to dispersion in the elliptic magnet sections and the lattice

chromaticity. The integrable lattice factors into a product

of maps:

M = A−1e−t :
∫
dsU(x−δη(s),y):e− :h:e−t :

∫
dsU(x−δη(s),y):A

(1)

where A is the normalizing map, and h is the Hamiltonian

that generates the single turn map for the integrable optics

lattice when the nonlinear elliptic potential strength is zero.

Thus, h includes drifts, dipoles, and quadrupoles, as well as

chromaticity-correcting families of nonlinear magnets. The

details of this calculation may be found in [

lengthy to include here.

The resulting Hamiltonian for the total single turn map

is given, to lowest order, by:

H =
μ0

2

{
[1−Cx(δ)]

(
p2x + x2

)
+[1−Cy(δ)]

(
p2y + y2

)
+

t

1− δ
∫ �drift

0

U (x− η(s′) δ), y) ds′
}
+ . . . (2)

where . . . are higher order terms, including any nonlin-

ear terms left over after adjusting the chromaticity. Here

we have assumed a coasting beam with no synchrotron

oscillations, thus δ is a constant. η(s) is the dispersion

function through the drift where the elliptic magnetic el-

ement will be placed, and U is the nonlinear elliptic poten-

tial from [

chromaticities, Cy(δ) and Cx(δ) respectively, are general

functions of δ. We also concluded that conventional chro-

maticity correction schemes – using sextupoles to correct

1]

2], which introduce very large tune

3] In this proceeding, we discuss how these

2] considers purely two-dimensional par-

4], a Lie operator treatment of a ring

2] due

4] and are too

2]. This means that the vertical and horizontal
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linear chromaticity with (2n+1)π phase advances between

the sextupoles to minimize dynamic aperture loss, for ex-

ample – still apply. The goal is to bring this lowest-order

Hamiltonian into a form which has two invariants and thus

preserves the two-dimensional integrability

The Hamiltonian in [

solution for free-space magnetic fields and the Bertrand-

Darboux partial differential equation for Hamiltonians with

a second invariant which is quadratic in the momentum.

One of the fundamental assumptions going into the deriva-

tion of the Bertrand-Darboux equation is that the coef-

ficients of the vertical and horizontal momenta must be

equal. In doing see, we obtain a modification of the Hamil-

tonian in eqn. (22) of [

H = (1− C(δ))
[
1

2

(
p2x + p2y + x2 + y2

)
+

1

1 −C(δ)V (x, y)

]
(3)

This leads us to four design principles for building a

lattice ready for the nonlinear integrable optics to obtain

an integrable Hamiltonian, even in the presence of energy

spread:

1. Vertical and horizontal linear tunes must be equal

2. Vertical and horizontal beta functions inside the drift

where the nonlinear magnet is to be placed must be

equal

3. Dispersion must vanish inside this drift

4. Vertical and horizontal chromaticities must be equal

Non-dispersive sections of rings are fairly standard, and

make the integral over the dispersion function into simply a

multiplication by �drift. The conclusion of equal chromatic-

ities is based on the following line of reasoning.

Chromaticity correction in conventional strong-focusing

linear lattices is a balancing act between having enough

tune spread to Landau damp instabilities, while keeping the

tune spread small enough to avoid crossing nonlinear res-

onances. Because the nonlinear integrable lattices already

have large tune spreads, which will already cross nonlinear

resonances, it is most important to keep the integrability of

the unperturbed Hamiltonian so that the KAM theorem ap-

plies near these resonances. It is thus sufficient to restore

the conditions required for the Bertrand-Darboux equation,

specifically that the transverse momenta have the same co-

efficient. We can therefore adjust Cx and Cy until they are

equal. This is actually beneficial to the dynamic aperture,

as this reduces the strength required of the chromaticity-

correcting nonlinear elements. It also gives us the freedom

to choose whether we correct one or both chromaticities,

depending on which choice will lead to the best dynamic

aperture.

SPACE CHARGE & THE INVARIANTS
We now return to study two-dimensional effects – how

space charge changes the distribution of a longitudinally

Figure 1: The r.m.s. value of H0 as a function of turn.

cold beam. We consider here the distribution of the Hamil-

tonian, H , and second invariant, I , described in [2]. We

began with a beam with an exponential distribution in H ,

viz.

f =
N

ε
e−H/ε (4)

where N is the number of particles per unit length in the

beam and ε is the transverse emittance. This distribution

reduces to a Gaussian distribution for a linear lattice, with

ε being simply the RMS emittance, equal in the vertical

and horizontal. Because the elliptic potential creates strong

transverse coupling, such a separation into “vertical” and

“horizontal” emittance is not possible for these lattices.

The addition of space charge adds a self-consistent term

to the Hamiltonian, so that the total Hamiltonian is given

by

H = H0(J) + V[f ] (5)

where V is the space charge potential. This has the effect of

changing the invariants, and so the initial distribution will

evolve. Here, V [f ] is a functional of the phase space dis-

tribution, which can be thought of as the Green’s function

for the potential as a function of the charge distribution, as

expressed in action-angle variables.

We use as a figure of merit the value of H0(p, q) as

a function of time. The initial distribution is a delta

function, δ(H0 − ε). This function is known from [2]

eqn. (22), and is analogous to the Courant-Snyder in-

variant for linear lattices. Thus, this bunch is analogous

to a Kapchinskij-Vladimirskij distribution with emittance

ε = 15mm−mrad. We therefore expect that the spread

in H0 should be a good indication of the beam evolution.

In Fig. H0grows dramatically

on two time scales. There is one time scale that is a handful

of turns that marks a dramatic increase in H0, and then a

slower diffusive-like process that takes over after this.

Based on this, we would expect the bunch distribution

to be expanding quite rapidly. However, this is not the

case, as we see in the phase space projections from turn

712 (Fig.

2] derives from a self-consistent

2]:

2), well after the diffusion has taken hold. The

1, we see that the spread in
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Figure 2: The transverse phase space projections after 712

turns.

Figure 3: RMS beam size and momentum spread versus

time.

initial distribution is much the same as this one, despite

the RMS value of H0 being 5 % of the initial H0. Longer

time simulations do not show a substantial departure from

this distribution. Indeed, we find that variations in the RMS

beam size vary at the 0.1 % level, in Fig.

to our intuition based on linear optics – the beam radius is

given by σr ∝
√
βε, and therefore an increase in ε should

correspond to a similar increase in the beam size.

We speculate that the origin of this can be derived from a

Fokker-Planck equation for diffusion in action space due to

the space charge perturbation [

distribution f = f(J) as a pure function of the action, the

stochasticity due to chaotic trajectories and phase mixing

leads to a Fokker-Planck equation

∂f

∂t
=

∂

∂J

⎧⎨
⎩1

4
(Δt)2

⎛
⎝ ∂

∂J

〈(
∂V[f ]
∂ψ

)2
〉
ψ

⎞
⎠ ∂f

∂J

⎫⎬
⎭

(6)

The total Hamiltonian H is broken into three parts: the

single particle integrable Hamiltonian, the component of

space charge that remains integrable, and the component

of space charge that induces diffusion. Specifically:

H = H0(J) + V0[f ](J) +
∑
n �=0

Vn[f ](J)einψ (7)

When we generate a distribution, we are matching it to

H0 – tracking that distribution over many thousands of

turns shows no change in the phase space distribution when

current is zero. The integrable space charge component,

V0[f ](J), represents a potential well distortion of sorts,

and is the source of the rapid early filamentation that oc-

curs over only a handful of turns. This is the origin of the

abrupt growth in measured H0 we see in a handful of turns

in Fig.

with ψ, cause the diffusion we see in H0 in Fig. 1.

A possible limit for space charge in the nonlinear inte-

grable lattices may be the existence of a stable stationary

solution to the Fokker-Planck equation for the phase space

distribution. Thus, the figures of merit for a nonlinear inte-

grable lattice to determine the importance of space charge

could be related to the functional form of the Fokker-

Planck equation, and the existence of stationary solutions.

This would go a long way to explaining the stability of

these beams in real space, despite their apparently poor be-

havior in terms of the single-particle invariant distributions.

FUTURE WORK
Nonlinear integrable optics remains a very naı̈ve field –

it is not clear how many concepts from conventional linear

lattices survive, and how they might be modified. We sug-

gest that there are two lines of inquiry worth pursuing: how

the chromatic corrections affect the dynamic aperture, and

how space charge affects the distribution.

Chromatic correction schemes are designed to minimize

the impact on on-energy dynamic aperture. The π phase

advances meticulously cancel terms that are not propor-

tional to the energy offset, and the chromatic correction

scheme is built around the terms, say, linear in δ for a sex-

tupole correction. There then remains O(δ2) terms which

reduce the dynamic aperture for off-energy particles. In the

linear lattice case, this is avoided by avoiding the resonant

lines in tune space these remaining terms generate. The

nonlinear integrable optics has an enormous tune spread –

this is the origin of its great robustness against parametric

resonances. It is necessary to gain theoretical guidelines

to how this affects the dynamic aperture. There are three

specific questions in this line:

1. Where are the resonant lines for these terms in the

nonlinear integrable optics?

2. What chromatic correction schemes can be used to get

the equal chromaticities while minimizing the impact

on dynamic aperture?

3. What is the diffusion time for particles on those reso-

nant lines?

3. This is contrary

5]. Taking the phase space

1 The remaining terms in the space charge, varying
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This requires understanding x and y in terms of two in-

variants I1 and I2, and their associated angle variables, to

understand resonance lines and the relevant parameters for

these computations. Analytical or semi-analytical results

are absolutely necessary for achieving guidance here.

We have established thus far that the nonlinear decoher-

ence prevents the onset of beam halo, and we have stud-

ied how the single-particle invariants evolve under space

charge. We have seen that space charge prompts diffusion-

like behavior in the H and I invariants, which is to be ex-

pected. What is curious is that the actual transverse pro-

file does not change dramatically under space charge, even

as the spread in the H and I quantities increases dramati-

cally. Understanding this behavior is critical for moving to

increasing intensity. This preliminary work suggests three

additional questions in the realm of space charge:

1. How are the relevant parameters for characterizing

space charge strength?

2. Is there a collective invariant consistent with space

charge but different from the single-particle invariant?

3. What can be done to compensate space charge?

The suggestion here is that there are a new set of invari-

ants (H ′, I ′) which are better-preserved in the presence of

space charge. This is one way to explain how the distribu-

tion in the single-particle invariants grows so rapidly, but

the actual beam envelope remains relatively stable. Until

the effects of space charge are fully understood, we can-

not make intelligent decisions about compensation, beam

transport limits, etc.
The current set of results are promising for implement-

ing a working accelerator that uses the nonlinear integrable

optics as a method of transporting intense beams with low

loss. We have given a theoretical conclusion for handling

the chromaticity. Simulations indicate high-power beams

may be transported without any loss due to space charge.

But our theoretical understanding of the nonlinear inte-

grable optics in the presence of space charge remains lim-

ited. In linear lattices, envelope models yield useful param-

eters such as the perveance and the Laslett tune shift [

No such clear-cut parameters exist to characterize the ef-

fects of space charge on the nonlinear integrable optics. It

is necessary to determine the relevant physics behind the

space charge dynamics in these beams, and in doing so de-

termine new figures of merit. Only then will we be able

to understand the real intensity-driven limits to beam trans-

port in the nonlinear integrable optics.

CONCLUSIONS
We have thus discussed two new aspects of the nonlinear

integrable lattices of Danilov and Nagaitsev. Through a Lie

operator formalism, we were able to obtain two new design

requirements for the lattices: (1) the dispersion through the

drifts where the elliptic elements will be inserted must be

zero, or as small as possible and (2) the vertical and hor-

izontal chromaticities must be equal. By following these

two rules, we are able to maintain single-particle integra-

bility even in the presence of energy spread and chromatic

effects. We have also studied how space charge affects the

beam distribution, and have found some surprising results.

While studying the distribution of the single-particle invari-

ant ε, we find a large growth in the RMS spread. Our intu-

ition from linear lattices is that this would lead to a mono-

tonic increase in the RMS beam size. However, our study

of the RMS size in the transverse plane show that the size of

the beam fluctuates but is not increasing after some initial

filamentation. We speculate that there are two processes at

work here: a rapid filamentation due to the integrable com-

ponent of the space charge potential distorting the potential

well, and diffusion due to the non-integrable components

of the space charge. We believe that a detailed study of

this may lead to useful figures of merit characterizing the

stability of beams in the presence of intense space charge

effects in the nonlinear integrable lattices.
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