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INTRODUCTION

Head-tail instabilities are expected to be one of the main

limitations of the high-intensity operation in the future

SIS100 synchrotron of the FAIR facility [1], especially for

the heavy-ion bunches [2]. This instability is already begin-

ning to limit the operation at the highest intensities in the

ISIS spallation neutron source [3] at the Rutherford Apple-

ton Laboratory in the UK. General ISIS bunch parameters,

especially the space-charge conditions, are similar to the ex-

pected heavy-ionbeams in SIS100, thus it might be possible

to use the physical insight and the experience from the ISIS

studies for anticipating the transverse stability in the SIS100

high-intensity bunches. Of particular interest is the depen-

dence of unstable beam modes on the configuration of the

RF system (single or dual harmonic), the influence of high

space charge levels, the key role of the betatron tune and the

determination of driving beam impedances.

OBSERVATIONS IN ISIS

A dedicated experimental campaign of three shifts has

been performed at the ISIS synchrotron in November 2013,

with the primary goal to understand more about the fast

losses and associated vertical oscillations around 2 ms of

the ISIS cycle, see Fig. 1. These losses are a concern for the

high-intensity operation and have been usually attributed to

head-tail instabilities. In standard ISIS operation, a 2RF sys-

tem is used. In order to be able to compare with classical

theories, and to simplify the first comparisons with simula-

tions, the most of the study was made with the 1RF (h = 2)

operation. Approximately one-third of the measurements

were done with different types of 2RF (h = 2, 4).
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Figure 1: ISIS cycle: the proton kinetic energy (solid line)

and the revolution frequency (dashed line), C = 163.26 m.

According to the experience at ISIS [4–6], the instability

appears if the vertical tune is set closer to integer from be-

low. The normal tune ramp at ISIS applies Qv = 3.85 at

0 ms decreasing to Qv = 3.68 at 10 ms, with Qv = 3.758

at 2 ms. In order to focus on the operation-type instabil-
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Figure 2: Consecutive bunch traces from the vertical BPM

delta (top) and sum (bottom) signal of a typical instability

for a 1RF bunch around Cycle Time 2 ms.
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Figure 3: Time evolution of the BPM delta (top) and sum

(bottom) signal for the instability from Fig. 2. The red line

is an exponential with the growth time τ = 0.1 ms.

ity, we have pushed the vertical tune higher around 2 ms

cycle time. Once tune reaches Qv ≈ 3.86, reproducible

strong losses and vertical collective oscillations appear. Fig-

ures 2, 3 present typical BPM signals around2 ms. The over-

plotted bunch traces in Fig. 2 show a standing wave pattern
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with one node, with chromaticity wiggles inside. The oscil-

lation grows with the growth time τ = 0.1 ms (Fig. 3), until

it is distorted by beam losses. This proves a classical unsta-

ble k = 1 head-tail mode. In the majority of the recorded

signals, it was hard to determine a clear growth rate, prob-

ably due to early losses. This might be attributed to large

beam sizes which intentionally maximise use of aperture.

More examples of the instabilities in ISIS, in 1RF and in

2RF, are given in the slides of this presentation.

For every beam and machine parameter set, an intensity

scan has been performed.

The results of the intensity scans are summarized in

Fig. 4. The left plot in Fig. 4 is dedicated to the 1RF instabil-

ity around 2 ms (red) and around 3 ms (blue). The right plot

in Fig. 4 compares different RF settings, the flat-bunch 2RF

(or lengthening mode) around 2 ms, and the operation-type

2RF (stable asymmetric settings) around 2 ms. There is no

instability at low intensities, which is a usual observation

for collective instabilities, due to natural non-linearities in

the machine optics. Hence, there is the common “bottom”

thresholds. Surprisingly, it was observed that instabilities

vanish above certain intensities, which we describe as “top”

thresholds. This phenomenon was clearly observed and re-

producible, in intensity scans upwards as well as downward.
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Figure 4: Summary for the intensity thresholds of the head-

tail instability observed in ISIS. Beam loss and oscillations

appear between the bottom and the top thresholds.

ANALYTICAL CALCULATIONS

We use the theory of Sacherer [7] in order to identify the

driving impedance and to estimate the growth rates. The

center of the power spectrum is shifted by Δf = f0Qξ/η,

ξ = −1.4, γt = 5.034, see Fig. 5. The positive frequencies

in the plot do not contribute to the instability drive, accord-

ing to this theory. In the case of the ISIS bunches, with the

full bunch length tb ≈ 200 ns around 2 ms, the head-tail

modes k = 2 should be unstable. In order to explain the

observed k = 1 modes, an effective bunch length 0.5tb has

been assumed. The observation that the instabilities appear

as the tune approaches integer from below, is a strong indi-

cation that an impedance with a Resistive-Wall frequency

dependence Re(Z⊥) ∝ 1/ f (indicated with the black line

in Fig. 5) should be the driving force. However, if we as-

sume the Resistive Thick-Wall Impedance with the pipe ra-

dius bpipe = 50 mm (i.e., overestimated impedance), much

slower instabilities than observed (τ <20 ms) are predicted,

see Fig. 5.
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Figure 5: Calculations with the Sacherer theory for the ISIS

1RF bunches. Top: power spectrum of the head-tail modes

(see [7]) and the real part of the normalized Resistive-Wall

impedance in the unstable range. Bottom: the resulting

growth rates.

SPACE CHARGE AND LANDAU DAMPING

The effect of self-field space-charge on head-tail modes

in bunches can be analytically solved for an airbag bunch [8].

This theory is also very useful and rather accurate for Gaus-

sian bunches, as it was observed in particle tracking simu-

lation [10] and in experiments in the SIS18 synchrotron at

GSI Darmstadt [11]. Landau damping due to space-charge

in bunches was predicted analytically in [12] and confirmed

with simulation studies in [10].

The additional effect of a coherent tune shift, for example

from the imaginary impedance of image charges, has been

included into the airbag theory in [9],

ΔQk = −
ΔQsc + ΔQcoh

2
±

√
(ΔQsc − ΔQcoh)2

4
+ k2Q2

s , (1)

where "+" is for modes k ≥ 0, the notation corresponds

to [11].

It is suggested that the combination of space-charge and

coherent force should have an effect on Landau damping.

Figure 6 shows the head-tail modes with and without a co-

herent tune shift, and the border of the active Landau damp-

ing area, ΔQmax = −0.23Qsq + kQs [11]. The lines are

shifted by (−k) for a better comparison. A head-tail mode

is affected by Landau damping if the frequency is below

damping border, the dashed line in Fig. 6. We see that the

k = 0 mode is not damped (it is not affected by space-charge,

see the left plot). The k = 1 mode is damped for 0 � q � 3

without coherent force, and for 0 � q � 6 with ΔQcoh. The

k = 2 mode is damped for 0 � q � 6 without coherent

force, and for 0 � q � 12 with ΔQcoh.
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Figure 6: Effect of the image charges on the head-tail

modes according to the airbag theory. Left plot: ΔQcoh = 0,

right plot: ΔQcoh = 0.1ΔQsc. The dashed line indicates the

border of Landau damping.

In order to observe the modifications of Landau damping

due to image charges, we consider the mode k = 1 and com-

pare the areas of strong damping for different strength of

the coherent forces. According to the airbag theory and the

Landau damping border prediction, with ΔQcoh = 0.1ΔQsc

the area of damping should be larger than for the case with-

out image charges, see Fig. 7. For ΔQcoh = 0.2ΔQsc the

coherent line remains under damping for all q values con-

sidered in Fig. 7. We perform PIC simulations using the

code PATRIC [13], similar to the work reported in [10], but

with the coherent effect included, which varies along the

bunch according to the local slice line density. The simu-

lation results are summarized in Fig. 8. This shows a good

qualitative confirmation of the effect of image charges on

the space-charge induced Landau damping.
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Figure 7: Effect of the image charges on the k = 1 head-

tail mode according to the airbag theory. The dashed line

indicates the border of Landau damping.

LANDAU DAMPING IN THE ISIS

BUNCHES

The parameters of the bunches in ISIS correspond to

the regime of rather strong space-charge, as demonstrated

in Fig. 9 with the estimations for the parameters in our

1RF experiments. The main uncertainty is associated with

the transverse emittance, here we have assumed the rms
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Figure 8: Damping decrement of the k = 1 head-tail mode

obtained from the PATRIC simulations for a Gaussian (lon-

gitudinally and transversally) bunch, Qs = 0.01, for differ-

ent strengths of the coherent tune shift due to image charges.
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Figure 9: Space-charge tune shift and the space-charge pa-

rameter for the 1RF bunches in ISIS at the beam intensity

4×1012 ppp.

non-normalized ε = 50 mm mrad at the start of the cy-

cle, in the vertical plane. The space-charge parameter q =

ΔQsc/Qs � 1 implies strong space-charge regime for the

bunch head-tail dynamics [10, 12]. We can also conclude

that, although the space-charge tune shifts decrease during

the ramp, the space-charge parameter stays stable around

q ≈ 40 in this case.

The ISIS vacuum pipe is a rectangular, conformal, stain-

less steel vessel [14], see Fig. 10. The coherent tune shift

due to image charges is proportional to the space-charge

tune shift,

ΔQcoh = ΔQsc2ξh ,v
a2

h2
, (2)

where a is the beam radius, h is the characteristic pipe size,

and ξh ,v depends on the pipe geometry. For a round pipe,

h is equal to the pipe radius, and ξh ,v = 0.5. For a rectan-

gular pipe, ξh ,v can be calculated from analytical functions,

see [15]. The results are presented in Fig. 10. The over-

all tune shift can be calculated as an average over the ring,

〈2ξh(s)/h2(s)〉H2
= 0.528, and 〈2ξv(s)/h2(s)〉H2

= 1.13,

where H = 〈h(s)〉 = 63.42 mm is the average pipe half-

height. This results in a vertical coherent tune shift of
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ΔQcoh ≈ 0.12ΔQsc for the 1RF bunch parameters with

4 × 1012 ppp.
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Figure 10: Top plot: half-apertures of the beam pipe in

ISIS over a superperiod. Bottom plot: image coefficients

for the rectangular ISIS pipe.

In order to analyse the changes in the tune shifts with

the increasing beam intensity, we consider three different

scenarios of the transverse emittance increase,

Δε⊥ = kN
ΔNp

Np0

ε⊥0. (3)

The case kN = 0 means that the emittance does not change

(most unrealistic), kN = 1 implies a constant phase-space

density, and kN = 0.5 is an intermediate case. The space-

charge tune shift is ΔQsc ∝ Np/ε⊥, thus it stays constant

for kN = 1 and increases linearly for kN = 0, see Fig. 11.

Differently, the coherent tune shift is ΔQcoh ∝ Np , thus it

increases linearly for all the kN−scenarios. As a result, the

relative strength ΔQcoh/ΔQsc stays constant for kN = 0 and

it increases for the both kN = 1 and kN = 0.5. The Landau

damping for the k = 1 mode, as predicted by our model

with the airbag theory, is presented in Fig. 12. Similarly

to Fig. 7, the mode is under active Landau damping if the

coherent line (solid line) is below a dashed line. We see that

for the unrealistic case kN = 0 there is no damping, but for

an increasing emittance, there is a border intensity where

the head-tail mode dips into Landau damping.

CONCLUSIONS

• Collective oscillations and beam losses have been sys-

tematically observed in ISIS around 2 ms Cycle Time

for various beam and machine parameters. In most

cases, it has been identified as the k = 1 head-tail mode

with the typical growth time τ ≈ 0.1 ms. For 2RF op-

eration, the mode structure can be more complicated.
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Figure 11: The space-charge parameter in the ISIS bunches

for different emittance increase scenario.
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scenario.

• With the help of the Sacherer theory, it can be con-

cluded that the driving impedance has a Resistive-Wall

type behaviour (resonant at low frequencies), because

the instability appears if the vertical tune is set closer

to integer from below. However, calculations with

the Sacherer theory require a shorter effective bunch

length in order to predict the k = 1 mode observed.

The predicted growth rates are also much smaller than

in the observations.

• Intensity thresholds have been identified for 1RF, 2RF

settings, and for different driving tunes, Fig. 4. In addi-

tion to the common “bottom” thresholds, unexpected

“top” intensity thresholds have been observed.

• Coherent tune shifts from the image charges modify

Landau damping due to space charge in the bunches.

It can be qualitatively analyzed using an airbag theory

and a model for the Landau damping. Our PATRIC

simulations confirm the enhanced damping due to im-

age charges.

• Detailed calculations show that, due to a unique con-

formal beam pipe in ISIS, the image charges should

produce strong coherent tune shifts. Additionally, the
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bunches in ISIS are in a regime of rather strong space

charge, q = ΔQsc/Qs ≈ 40. The largest uncertainty

in the ISIS experiments is due to the measurements of

the transverse emittance.

• Calculations for the coherent frequency of the k = 1

head-tail mode and for Landau damping with different

scenarios of the transverse emittance increase suggest

an intensity threshold, above which the k = 1 mode

can be stabilized. This effect is due to different devel-

opment of the space-charge tune shift and the image-

charge tune shift for an increasing intensity.

• Enhanced Landau damping with image charges may be

achieved with a controlled transverse emittance blow-

up. This has been observed in the experiments re-

ported here. The instability in 1RF bunches around

2 ms has been cured by increasing the transverse emit-

tance, keeping the rest of the beam parameters fixed.

This observation can be interpreted as a “top” thresh-

old in transverse emittance. It should be noted that

even with the beam stabilised, the associated increase

in emittance can still lead to high levels of beam loss.

• Landau damping due to space charge with the effect of

image charges should be taken into account in the sta-

bility studies for SIS100. The discrepancies between

the Sacherer theory and the ISIS observations imply a

possibility for much faster instabilities than expected

so far.
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