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Abstract

Flat beams feature unequal emittances in the horizontal

and vertical phase space. Such beams were created success-

fully in electron machines by applying effective stand-alone

solenoid fringe fields in the electron gun. This contribution

is an extension of the method to ion beams and on the decou-

pling capabilities of such a round-to-flat adaptor. The beam

line provides a single-knob tool to partition the horizontal

and vertical rms emittances, while keeping the product of the

two emittances constant as well as the transverse rms Twiss

parameters (βx,y and αx,y ) in both planes. This single knob

is the solenoid field strength. The successful commissioning

of the set-up with beam will be presented as well.

INTRODUCTION

Transformation of a round beam (equal transverse emit-

tances) to a flat beam (different transverse emittances) re-

quires changing the beam eigen-emittances. The eigen-

emittances are defined through the beam second moments

as

ε1 =
1

2

√

−tr[(C J)2] +

√

tr2[(C J)2] − 16det(C) (1)

ε2 =
1

2

√

−tr[(C J)2] −
√

tr2[(C J)2] − 16det(C), (2)

where

C =



〈xx〉 〈xx
′〉 〈xy〉 〈xy′〉

〈x ′x〉 〈x ′x ′〉 〈x ′y〉 〈x ′y′〉
〈yx〉 〈yx

′〉 〈yy〉 〈yy′〉
〈y′x〉 〈y′x ′〉 〈y′y〉 〈y′y′〉


(3)

and

J =



0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


. (4)

and rf-gaps do not change neither the beam rms emittances

nor the eigen-emittances. Solenoids, skew quadrupoles, and

-dipoles change the rms emittances through x-y coupling.

But they do not change the eigen-emittances. This is often

expressed by the simplecticity criterion for the transport

matrix M representing the transport element [1]

M
T

JM = J. (5)

A matrix M satisfying the above criterion, is called symplec-

tic and the eigen-emittances of a beam being transported by

M remain constant. Beam particle coordinates are expressed

by displacements x and y in space and by the respective

derivatives x’ and y’ w.r.t. the longitudinal coordinate s.

The matrix of a solenoid fringe field reads as

MF =



1 0 0 0

0 1 k 0

0 0 1 0

−k 0 0 1


(6)

with k =
B

2(Bρ)
. B is the solenoid on-axis magnetic field

strength and Bρ is the beam rigidity. MF does not satisfy

Equ. 5 and changes the eigen-emittances. However, it leaves

constant the 4d rms emittance defined as the square root of

the determinant of C from Equ. 3.

lines are closed. Effective stand-alone fringe fields act on

the beam if the beam charge state is changed in between the

fringes of the same solenoid. This is the case for rf-guns [2,3]

(free electron creation inside solenoid), extraction from an

Electron-Cyclotron-Resonance ion source [4] (ionisation

inside the solenoid), and for charge state stripping inside a

solenoid [5]. Further discussion of symplecticity of fringes

shall be avoided here and we refer to [6] instead. We just

point out that changing the ion beam charge state is equiva-

lent to cancelling the stripped-off electrons from the system.

This cancellation is a non-symplectic action and conserva-

tion of the eigen-emittances within the remaining subsystem

cannot by assumed in general.

coupled an initially round & decoupled beam. The second

moments matrix of this beam at the entrance to that fringe

is given by

C
′

1 =



ε β 0 0 0

0 ε
β

0 0

0 0 ε β 0

0 0 0 ε
β



, (7)

where ε is the rms emittance in both transverse planes and

β is the rms beta function.

we repeat parts of references [7] and [8], i.e. decoupling

of the beam using a generic decoupling beam line. The

subsequent section treats the extension of the generic case to

any decoupling beam line. Finally, we report on successful

experimental demonstration of one-knob emittance transfer.

DE-COUPLING FOR THE GENERIC CASE

The beam second moment matrix after passing the fringe

field of Equ. 6 is

C
′

2 = MFC
′

1M
T
F =

[
εnRn −kεn βn Jn

kεn βn Jn εnRn

]
, (8)

   Linear transport elements as drifts, quadrupoles, dipoles,

  Stand-alone fringe fields do not exist since magnetic field

                  In this report we assume that an effective fringe field (Equ. 6)

   The report is organized in the following: in the first section
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where

εn =

√

ε β(
ε

β
+ k2ε β), βn =

βε

εn
, (9)

introducing the 2×2 sub-matrices Rn and Jn as

Rn =

[
βn 0

0 1
βn

]
, Jn =

[
0 1

−1 0

]
. (10)

Inter-plane coupling is created and the rms emittances and

eigen-emittances after the fringe read

εx,y = εn , ε1,2 = εn (1 ∓ k βn ) . (11)

The parameter t is introduced to quantify the interplane

coupling. If t defined as

t =
εxεy

ε1ε2

− 1 ≥ 0 (12)

is equal to zero, there are no inter-plane correlations and the

beam is fully decoupled.

i.e. its central longitudinal field. Tracking simulations using

3D-field maps of finite solenoids confirmed that this omis-

sion is justified [9].

Equ. 8 is decoupled through a beam line formed by an iden-

tity matrix in the x-direction and an additional 90◦ phase

advance in y-direction

Rq =

[
In On

On Tn

]
. (13)

Here the 2×2 sub-matrices On , Tn and In are defined as

On =

[
0 0

0 0

]
, Tn =

[
0 u

− 1
u

0

]
, In =

[
1 0

0 1

]
. (14)

If the quadrupoles are tilted by 45◦ the 4×4 transfer matrix

can be written as

R = Rr RqR
T
r =

1

2

[
Tn+ Tn−
Tn− Tn+

]
, (15)

where

Rr =
1
√

2

[
In In

−In In

]
, Tn± = Tn ± In . (16)

The beam matrix C
′

3
after the decoupling section is

C
′

3 = RC
′

2R
T
=

[
η+Γn+ ζΓn−
ζΓn− η−Γn+

]
, (17)

and the 2×2 sub-matrices Γn± are defined through

Γn± =

[
u 0

0 ± 1
u

]
, (18)

with

η± =
εn

2
(
βn

u
+

u

βn
∓ 2k βn ) (19)

and

ζ =
εn

2
(− βn

u
+

u

βn
) . (20)

Assuming that this beam matrix is diagonal, its x-y compo-

nent vanishes

ζΓn− = On (21)

solved by

u = ±βn , (22)

where the positive sign indicates that εx is made equal to ε1

by decoupling and the negative sign means that εy is made

equal to ε1. We calculate the final rms emittances obtaining

εx,y = |εn (1 ∓ k βn ) | . (23)

k0 , the cor-

responding quadrupole gradients may be determined using

a numerical routine, such that finally the rms emittances are

equal to the eigen-emittances. If these optimized gradients

are applied to remove interplane correlations produced by

a different fringe strength k1, the resulting rms emittances

and eigen-emittances at the exit of the decoupling section

are calculated as

εx,y =
εn (k1)

2

�����
βn (k1)

βn (k0)
+

βn (k0)

βn (k1)
∓ 2k1 βn (k1)

�����
(24)

and

ε1,2 = εn (k1) |1 ∓ k1 βn (k1) | (25)

with the parameter

t =
ε2 β2

ε
β

( ε
β
+ k

2
0
ε β)

(k
2
1
− k

2
0
)2

4
. (26)

In the same way the rms Twiss parameters of a beam coupled

by k1 but decoupled by R(k0) are found from Equ. (17) as

α̃x = α̃y = 0, β̃x = β̃y = βn (k0) , (27)

showing that the rms Twiss parameters after decoupling do

not depend on the coupling solenoid fringe strength k1 if the

decoupling section was set assuming a coupling strength k0.

We stress the very convenient feature of the generic de-

coupling line R: once a decoupling set of gradients has

been found for the fringe field strength ko , these gradients

will practically decouple also beams coupled by a different

strength |k1 | ≤ |k0 |. This is shown in Fig. 1, which was orig-

inally presented in [8]. Moreover, the Twiss parameters β

and α at the exit of the generic beam line R do not depend on

the fringe strength. These two features enormously facilitate

the design and operation of such a round-to-flat adapter.

   Obtaining this result we neglected the finite solenoid length,

   As shown for instance by Kim [7] the beam represented by

  For a given effective solenoid fringe field strength
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Figure 1: The coupling parameter t at the exit of the generic

beam line R as a function of the solenoid field causing

the fringe field strength k1 (blue line). The figure is taken

from [8] and k0 corresponds to 1.0 T. The dependency is

described by Equ. 26.

DECOUPLING FOR THE GENERAL CASE

In the previous section we derived the following ensemble

P of properties of the generic decoupling line R of Equ. 15:

• t at the exit scales as (k
2
1
−k

2
0
)2, where ko is the assumed

fringe strength and k1 is the strength actually applied

for the coupling. t << 1 holds over a wide range of k1

(Equ. 26 and Fig. 1 with B ∼ k1).

• the exit Twiss parameters βx , αx , βy , αy do not depend

on the actual fringe strength k1 (Equ. 27).

• the only quantity considerably changed through the

fringe strength is the transverse rms emittance parti-

tioning εx/εy (Equ. 24).

signs in Equ. 22. However, [8] found by various tracking

simulations with TRACK [10] as well as by applying the

matrix formalism, that P seems to hold for any beam line

MD that provides decoupling of a round beam previously

coupled through a stand-alone solenoid fringe field. This

feature was not understood in [8].

Instead it can be understood through the procedure

being illustrated in Fig. 2. Suppose there is any arbitrary

beam line MD that provides decoupling. This beam line

includes x-y coupling linear elements. We prolong MD by

a beam line represented by the matrix

A =

[
Ax On

On Ay

]
(28)

with the 2×2 sub-matrices Ax and Ay . A must not include

any x-y coupling element.

The resulting total beam line is the product AMD . We choose

for the non-coupling line A = RM
−1
D

such that R = AMD .

Figure 2: Extension of the decoupling features of the generic

beam line R to any decoupling beam line MD . SF denotes

the location of the initially coupling stand-alone solenoid

fringe field. The arbitrary decoupling beam line MD ends

at SD , and the generic beam line R ends at SR . The beam

line A does not include any x-y coupling element.

Care is to be taken in choosing the right sign at Equ. 22

in the construction of R. This is to assure that both, MD

and R, reduce εx to the same of the two eigen-emittances.

Choosing the wrong sign, A gets an emittance exchange

beam line that includes coupling elements. As shown above,

at the exit of R the properties P hold. From the exit of

R the Twiss parameters ε, β, and α (in both planes) are

transported backwards to SD by applying A
−1 being aware

that α and β do not depend from the fringe strength. As

A does not include any x-y coupling element, neither does

A
−1. Accordingly, the back-transformed Twiss parameters

at SD also do not depend on the fringe strength. The same

way the invariance of the Twiss parameters w.r.t. the fringe

strength is kept through the back-transportation by A
−1, the

weak dependence of t(k1) is back-transported & preserved

through A
−1. Since A

−1 is non-coupling, it preserves t. In

other words, the properties P at the exit of R are preserved

during back-transportation by A
−1. As a consequence the

properties P hold also at the exit of the arbitrarily chosen

decoupling beam line MD .

EXPERIMENTAL DEMONSTRATION

The EMitance Transfer EXperiment (EMTEX) was in-

stalled [11] last year along the transfer channel from GSI’s

UNIversal Linear ACcelerator (UNILAC) to the synchrotron.

Figure 3 shows the set-up starting with two doublets to match

Figure 3: Beam line of EMTEX (Emittance Transfer Exper-

iment).

  It must be stressed that these properties hold for both
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the beam to the entrance of the short solenoid, which pro-

vides inter-plane coupling. The foil can be moved into the

solenoid center. Stripping in the foil causes the entrance and

exit fringe fields to act differently on the beam. Together

with the fact that the solenoid is sufficiently short, this set-up

provides for an effective stand-alone solenoid fringe field

modelled through Eq. 6. After the solenoid the coupled

beam is matched by a triplet to the skew triplet that provides

decoupling. Another regular triplet re-matches the beam for

further transport. It is followed by a slit-grid beam emittance

meter which allows for measuring the phase space distribu-

tion in the horizontal and vertical planes.

For the experiment a low intensity beam of 14N3+ at

11.4 MeV/u was used. First, all EMTEX magnets were

turned off and the stripping foil was removed from the

solenoid. Full beam transmission was assured by using

beam current transformes installed in front of and behind

EMTEX. In order to assure that the beam in front of EM-

TEX does not exhibit already some inter-plane correlations,

its image was observed using a fluorescence screen. The

image was observed under variation of a quadrupole being

installed in front of the screen. The quadrupole strength was

varied to deliver a large spectrum of beam spot aspect ratios.

Considerable inter-plane correlations would have manifested

through tilted beam images. As only upright images were

observed, it was assumed that no inter-plane correlations are

present at the entrance to EMTEX.

In the following step, beam emittances were measured in

both planes at the exit of EMTEX. The obtained Twiss pa-

rameters together with the settings of the first two doublets

were used to determine the beam Twiss parameters at the en-

trance to the first doublet of EMTEX. A horizontal (vertical)

rms emittance of 1.04 (0.82) mm mrad was measured. Both

doublets were set to provide a small beam with double waist

at the location of the foil. The foil (carbon, 200 µg/cm2,

30 mm in diameter) was moved into the solenoid. The mea-

sured beam current transmission increased by a factor of

2.3 as expected from charge state stripping of the beam

from 3+ to 7+. Beam phase probes behind EMTEX were

used to detect eventual beam energy loss induced by the

foil. Within the resolution of the probes we assume that

energy loss is close to the calculated value of 0.026 MeV/u

from the ATIMA code [12]. The same code was used to

calculate the mean angular scattering of 0.474 mrad per

plane. After determining all required input parameters the

solenoid field was set to 0.9 T. Applying a numerical routine

the three triplets behind the solenoid were set to decouple

the beam and to provide for a beam with small vertical and

large horizontal emittance together with full transmission

through the entire set-up. These gradients were set and full

beam transmission was preserved. Just very few steering

was needed to re-center the beam in the emittance meter.

This was required due to slight misalignment of the solenoid

axis w.r.t. the beam axis. For the setting mentioned above

both transverse emittances were measured. Afterwards the

solenoid field was reduced stepwise to 0 T. The solenoid

field Bi was set by following the remanence-mitigating path

Bi−1 → Bmax → 0 T → Bi . All quadrupole gradients were

kept constant. For each solenoid setting full transmission

was preserved and both emittances were measured.

Figure 4 plots the measured rms emittances behind EMTEX

as functions of the solenoid field strength. With increas-

Figure 4: Vertical (blue) and horizontal (red) rms emittances

at the exit of the EMTEX beam line as functions of the

solenoid field strength. All other settings were kept constant.

Shown are results from measurements (dots), from applica-

tion of the 4d-envelope model for coupled lattices (dashed),

and from tracking simulations (dotted).

ing solenoid field the vertical emittance decreases while the

horizontal increases. The product of the two emittances

remains constant within the precision of the measurement.

This behaviour is in full agreement to theoretical predictions

from [8] and to tracking simulations with TRACK [10] using

magnetic field maps. It is also in agreement with calcula-

tions that apply the recently developed 4d-envelope model

for coupled lattices [13–16]. The observed emittance sep-

aration under variation of the solenoid field only, confirms

that EMTEX is an one-knob tool for adjustable emittance

partitioning.

Figure 5 displays measured phase space distributions as

functions of the solenoid field strength. It demonstrates that

the shapes of the occupied areas in phase space and espe-

Figure 5: Vertical (upper) and horizontal (lower) phase space

distributions measured at the exit of the EMTEX beam line

as functions of the solenoid field strength. All other set-

tings were kept constant. Black ellipses indicate the 4×rms

ellipses.

WEO3LR04 Proceedings of HB2014, East-Lansing, MI, USA

ISBN 978-3-95450-173-1

292C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Beam Dynamics in Linacs



cially the shapes of the corresponding 4×rms ellipses do

not depend on the solenoid field strength within the reso-

lution of the measurement. Also this experimental result

is in full agreement to the observation from simulations

reported in [8] and to the properties of EMTEX derived

previously. These references assume a beam with exactly

equal transverse emittances at the entrance of EMTEX. The

beam emittances in the experiment differed by 23% from

each other. However, the quasi-invariance of the final el-

lipse shapes is in excellent agreement with the 4d-envelope

model and with tracking simulations also for the presented

experiment. Accordingly, the experimental data also con-

firm that EMTEX is a one-knob emittance partitioning tool

that preserves the beam envelope functions β and α at its

exit, if the initial beam emittances are similar. This feature

makes it obsolete to re-match the envelopes as a function of

the desired emittance partitioning once the partitioning is

completed.

The emittance partitioning is given by the solenoid field

strength. As shown in [8], inversion of the solenoid field

swaps the behaviours of the emittances displayed in Fig. 4,

i.e. for negative solenoid field strengths the vertical emit-

tance increases and the horizontal one decreases with the

field strength. This could not be tested experimentally, since

the solenoid power converter was uni-polar. However, in-

version of the solenoid field strength is fully equivalent to

inversion of the skew quadrupole gradients, while keeping

all other gradients and the solenoid field constant. Inversion

of the skew gradients corresponds to rotation of the skew

quadrupoles by 90° , i.e. to swapping the transverse planes.

Accordingly, the sense of emittance partitioning is inverted

for inverted skew gradients. This was verified experimen-

tally as shown in Fig. 6. Also for inverted skew quadrupole

Figure 6: Vertical (blue) and horizontal (red) rms emittances

at the exit of the EMTEX beam line as functions of the

solenoid field strength. All other settings were kept constant.

Shown are results from measurements (dots), from applica-

tion of the 4d-envelope model for coupled lattices (dashed),

and from tracking simulations (dotted). W.r.t. Fig. 4 the

gradients of the skew quadrupoles are inverted.

gradients, preservation of the orientations and shapes of

the measured phase space distributions was observed. Just

the sizes of the corresponding 4×rms ellipses changed with

the solenoid field strength. For inverted skew quadrupoles

the agreement to theory and to simulations is still good but

slightly worse than for the case shown in Fig. 4. Addition-

ally, for a given solenoid field value the horizontal emittance

values shown in Fig. 6 are not exactly equal to the vertical

emittance values shown in Fig. 4. According to theory they

should be equal. However, the differences are very small.

We attribute them to remanence effects in the solenoid and

in the bi-polar skew triplets.
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