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Abstract
This paper describes an overview of the geometric non-

linear effects common to beam position monitors (BPMs)
installed in the accelerators and a methodology to correct for
these effects. A typical characteristic curve of a pick-up is
linear within a limited range from the BPM origin. At larger
offsets the non-linearity of the curve is more pronounced
and gets worse if the button diameter is small with respect to
the beam pipe diameter. The general real-time linearization
methods usually utilize linear correction combined with a
simplistic polynomial, which may lead to inaccuracies in
their limited application. We have developed amore rigorous
methodology to suppress the non-linear effects of the BPMs
through electromagnetic (EM) simulations and 2D fitting
approximations. The focus is mainly on standard button pick-
ups for the electron (ALBA) and proton machines (LHC).

INTRODUCTION
BPMs are among the most important and numerous parts

of a diagnostics system of any particle accelerator. Accel-
erators require constant beam orbit monitoring in order to
control the quality of passing beams and allow various feed-
back systems to improve it. Usually beams travel close to
geometrical centers of BPMs on their way, following the
optimal “golden” orbit. However, beams are sometimes in-
tentionally steered away from the optimal orbit, whether it is
to increase the crossing angle in order to improve luminosity
of a collider (LHC), or to study the non-linear magnetic field
components of a storage ring (ALBA).

Figure 1: 3D models of a typical LHC curved-button pickup
and a standard pickup of ALBA.

Every beam position reading of a BPM is subject to non-
linear errors. The non-linear behavior of a BPM pickup is
caused by its geometrical design and the resulting errors
are more pronounced at larger beam offsets from the BPM
origin. In this paper we will describe two standard BPM
geometries, one belonging to LHC: a proton collider, and an-
other to ALBA: a synchrotron light source (both geometries
are shown in Fig. 1). After discussing the modeling and sim-

ulation process we will summarize non-linear effects of the
BPMs’ characteristic response for different signal treatments,
and address results of an efficient non-linearity correction
using high-order surface (2D) polynomials.

MODELLING AND MAPPING A BPM
Left in Fig. 1 is a common 4-button (arranged 90o apart)

pickup mounted on a beam pipe of circular cross-section
(radius Rlhc = 24.5 mm) belonging to the LHC. Right in
Fig. 1 is a flat-button BPM used in ALBA, a 3 GeV syn-
chrotron light source, with 2 pairs of buttons located above
and below the beam, which travels in a hexagonal beam pipe
of 72 × 28 mm transversely (Ralba = 36 mm).

Figure 2: Meshing BPM buttons with hexahedral mesh of
CST Particle Studio and tetrahedral meshes of CST Electro-
static and ACE3P.

As usual in light sources, parts of ALBA vacuum chamber
include the anti-chamber used for photons. Depending on
location in the storage ring, the anti-chamber has different
dimensions; one of them is shown in Fig. 1 right. Here the
beam pipe loses its symmetry in Y plane; however, we have
studied 2 types of anti-chambers attached to the same BPM
module, and have not observed any noticeable effect on BPM
sensitivity. Hence, in our studies we consider all types of
ALBA beam pipes symmetric, omitting the anti-chamber.

To simulate BPM response of the LHC button in time-
domain we have initially used CST Particle Studio [1]. We
have found that for 3D geometry with small curved elements
(e.g. a curved button and a curved vacuum gap around
it, Fig. 2 left) the hexahedral mesh of CST PS is not very
efficient: in pursuit to approximate curves by orthogonal
edges, the mesh cells greatly multiply in numbers (at least
6Mmesh cells for this BPM), leading to lengthy simulations:
it took 25 minutes on a desktop PC with 2x3.5 GHz CPU
and 8 Gb RAM to simulate a single beam transit.

To avoid this time waste we have switched to the Electro-
static solver of CST in “semi-2D” mode [2], using the tetra-
hedral mesh with more accurate approximation of curved
elements. The solver itself does not allow a true 2D input, so
we introduce a 1 mm thick “slice” of the BPMwith magnetic
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Figure 3: Mapping layout of LHC (left) and ALBA (right)
BPMs with equidistant grid covering the first quadrant of
the coordinate system.

boundaries at the z-planes (Fig. 2 middle). The electrostatic
potentials are then evaluated for one BPM electrode and, due
to symmetries, restored for others by mirroring/rotation. The
obtained potentials are then combined for the normalized
horizontal/vertical potential, which is equivalent to the nor-
malized line charge (the beam) position. A single simulation
maps the entire BPM in seconds.

To simulate the ALBA pick-up we have used the 3D time-
domain solver (T3P) of ACE3P [3], which also offers tetra-
hedral meshing (Fig. 2 right) and quick (within minutes)
simulations on parallel CPU clusters. The BPM was excited
with a single relativistic bunch excitation (Q=3.4E-10 C,
στ=5 mm). To simulate the BPM response as a function
of beam position, a beam displacement parameter sweep
within a quadrant in the transverse plane (as shown in Fig. 3)
was executed in T3P using the transverse beam coordinates
(x, y) as iteration parameters with constant step size. At
each beam position the peak voltage Vi=1,2,3,4 of every BPM
port was logged. Due to 4-fold symmetry of the ALBA
BPM, the mapped quarter-grid is then mirrored (taking into
account appropriate sign swaps) to reproduce a full map,
thus describing behavior of the entire BPM. We have stayed
with a 41 × 23 grid (±20 × ±11 mm) for the ALBA BPM,
and a 21 × 21 grid (±17 × ±17 mm) for the LHC pickup.
The initial choice of grid size, step size and number of grid
points is open; however, it has an impact on the quality of
beam position linearization and area of efficient correction.

We consider the 3D approach as the default technique, as
it accurately takes all beam-induced effects (e.g. resonances,
non-TEM effects, etc.) into account. Analysis of the men-
tioned tools for BPM modelling was previously discussed
in [2] in more detail.

NON-LINEARITY TREATMENT
By comparing the signals of opposite sets of electrodes,

a beam intensity independent, normalized beam position
signal can be deduced. There are several ways to restore the
beam position from 4-button BPM signals due to distinct
button arrangements in considered geometries. We will
show three examples of common linear signal treatments.

Difference over Sum
In a simplistic symmetric BPM button arrangement

around a circular vacuum chamber (LHC case), the pickup re-

(a) Horizontal beam sweeps for 3 vertical dis-
placements.

(b) Characteristic curves of the beam sweeps above.

(c) Mapped grid of (x lhcdos, y
lhc
dos).

Figure 4: Results of DOS application to LHC BPM map.

sponse can be approximated by a wall-current model, where
the normalized position characteristic in the XY plane is
described in general by

xlhcdos = kx ×
V1 − V2
V1 + V2

, ylhcdos = ky ×
V3 − V4
V3 + V4

(1)

Here kx , ky are the linear calibration constants to mm,
and in fact, for circular beam pipes they are approximated
by kx,y = R/2 [2]. Equation 1 represents a classic linear
approach, usually referenced as the Difference Over Sum
(DOS), its application is plotted in Fig. 4 for horizontal
sweeps at fixed vertical offsets and for a full mapped grid
of the LHC BPM. Here the linear region of kx,y is within
x, y = ±7 mm.
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(a) Horizontal beam sweeps for 3 vertical displacements.

(b) Characteristic curves of the beam sweeps above.

(c) Mapped grid of (xalbados , y
alba
dos ).

Figure 5: Results of DOS application to ALBA BPM map.
Anti-chamber is not shown.

Due to button placement in the ALBA BPM, a modifica-
tion of DOS is used to normalize the electrode signals [4]:

xalbados = kx ×
V3 + V1 − V4 − V2
V1 + V2 + V3 + V4

(2)

yalbados = ky ×
V3 + V4 − V2 − V1
V1 + V2 + V3 + V4

(3)

Here kx,y can be approximated by the slope of the charac-
teristic curve (linear part of it) for each axis separately, e.g.
the red curve (y = 0) for |x | ≤ 5 mm in Fig. 5(b) can provide
a corresponding constant kx . However, this approach has
limited application due to strong cross-coupling between X
and Y offsets and non-linear behavior of kx and ky already
for arbitrary beam offsets.

Diagonal Treatment
By using a so-called “diagonal” treatment [5, 6] of the

ALBA BPM signals

(a) Horizontal beam sweeps for 3 vertical displacements.

(b) Characteristic curves of the beam sweeps above.

(c) Mapped grid of (xalbadiag, y
alba
diag ).

Figure 6: Diagonal treatment of ALBA BPM map.

xalbadiag =
kx
2
×

[
V3 − V2
V3 + V2

−
V4 − V1
V4 + V1

]
(4)

yalbadiag =
ky
2
×

[
V3 − V2
V3 + V2

+
V4 − V1
V4 + V1

]
(5)

a much smaller coupling within the central part of the BPM
is obtained. A pair of constant calibration factors kx,y can
provide linearization for an arbitrary beam offset within
x, y = ±5 mm, as can be observed in Fig. 6(b): for three
different beam sweeps the characteristic curves are almost
identical. Compared to previous DOS treatment, the diago-
nal approach is favorable for BPMs where the buttons are
not located along the transverse axis, and beams stay within
the close vicinity of beam pipe center.

POLYNOMIAL CORRECTION
Linear analysis demonstrates that no electrode configu-

ration of a button BPM can supply a perfect linear beam
position response. Their position sensitivity is not only non-
linear, particular for large beam displacements, but the maps
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Figure 7: 9th-order polynomial correction of LHC BPM grid
(xlhcdos, y

lhc
dos) (right), and its error map (left).

in Figs. 4(c)-6(c) also show a “pin-cushion” effect, indicat-
ing cross-coupling between XY planes. In a general case of
an arbitrary BPM cross-section, the position characteristic
of the pickup cannot be approximated by a closed analytical
form, and therefore must be evaluated in a different way.

Based on the studies done in [2,7] for LHC stripline BPMs,
we have applied the polynomial fitting technique to both
considered pickups. Applying a mapping scheme, a pair of
polynomial functions (one per each plane) of the following
form allows to adequately compensate non-linearity of the
BPM response within the considered mapped grid, taking
into account the cross-coupling:

Fx,y
pq (xbpm , ybpm ) =

p,q∑
i, j=0

Cx,y
i j xibpm y

j
bpm

(6)

Here Cx,y
i j is a set of calculated coefficients per each cor-

responding plane X and Y, p and q are maximum powers
of each variable, and (xbpm , ybpm ) are the uncorrected sets

(a) Corrected grid of (xalbados , y
alba
dos ) (zoom),

(b) and its error map.

Figure 8: 9th-order polynomial correction of partial ALBA
BPM grid after DOS signal treatment.

of beam position values, i.e. (xlhcdos, y
lhc
dos), (xalbados , y

alba
dos ) or

(xalbadiag, y
alba
diag). We have determined that already low-power

polynomials provide sufficient quality of correction. For
brevity, here we will focus only on the 9th-order polynomi-
als.
An absolute error map is defined as distances (in mm)

between initial beam positions and corrected positions by the
polynomial. For convenience, it is displayed as color-coded
map with error values normalized to the aperture R, such
that all error values above 1% of R are colored in red.
Figure 7 shows application of the calculated polynomial

to the LHC BPM grid: the corrected map and its 2D error.
Here, an overall quality of correction is well below 75 µm
(0.3% of Rlhc) except the grid corners, where the beam is
unlikely to drift.

Partial Correction
In any accelerator the beam is typically allowed to circu-

late within limited offsets from the beam pipe center. Larger
drift will be detected by interlock BPMs and the beam will
be automatically dumped. For the first study on ALBA
BPM, consider the “beam allowed” limit as 21 × 23 points
(±10 × ±11 mm) - a subset of previously defined grid. By
including the limited grids of both DOS (Eq. 2) and diagonal
(Eq. 4) normalization types in the polynomial routine, we
calculate 9th-order polynomials which are efficient only in
the “allowed” area. Figures 8(a,b) and Figures 9(a,b) show
a zoom into the corrected maps and errors after applying
these polynomials corresponding to DOS or diagonal-type
grids. Here blue points belong to the “beam allowed” area,
included in the polynomial fits, while red ones were ini-

(a) Corrected grid of (xalbadiag, y
alba
diag ) (zoom),

(b) and its error map.

Figure 9: 9th-order polynomial correction of partial ALBA
BPM grid after diagonal signal treatment.
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(a) Corrected grid of (xalbados , y
alba
dos ) (zoom),

(b) and its error map.

Figure 10: 9th-order polynomial correction of a full ALBA
BPM grid after DOS normalization.

tially excluded. The overall correction efficiency for both
normalization types is under 200 µm (0.6 % of Ralba).

Complete Correction
Limiting the BPM map can be useful to gain linearization

accuracy in the central area of a BPM, when the correction
beyond is not important. Larger-scale correction can be done
by deriving a polynomial based on the maximal mapped grid
of points. Results of such approach (also for 9th-order polys)
are shown in Figs. 10 and 11 for both normalization types
of ALBA BPM.
There is a clear reduction of accuracy seen in both error

maps, especially along the axes in Figs. 10(b) and 11(b).
To avoid this one could increase the polynomial powers,
possibly, at the cost of some processing speed on the fly. We
consider testing it in the future.

CONCLUSIONS AND OUTLOOK
In this work we analyzed several types of geometrical

non-linear effects which deteriorate the BPM response of
two standard BPM pickups. We demonstrated the results of
efficient suppression of these effects by surface polynomials,
calculated by combining EM simulations with 2D fitting.
This methodology has great potential to be applied for any
BPM of a modern accelerator.

However, testing these polynomials with actual real-time
beam orbit monitoring is a challenge because it is difficult
to produce large amplitude orbits. For historical (and sim-
plicity) reasons the calibration of 1100 LHC BPMs before
2013 was limited to a 5th-order 1D polynomial, which was
sufficient for most operational situations, except for several
critical BPMs near the collision points. The correction of

(a) Corrected grid of (xalbadiag, y
alba
diag ) (zoom),

(b) and its error map.

Figure 11: 9th-order polynomial correction of a full ALBA
BPM grid after diagonal normalization.

all LHC BPM families will be replaced by proper 2D poly-
nomials after 2015. At the moment all 120 BPMs of ALBA
are using linear BPM calibration with constant calibration
factors. For studies of non-linear correction, the data will
be analyzed off-line during upcoming machine studies.
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