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Abstract
With the advent of fast high resolution Analog to Digital

Converters (ADCs) and Field Programmable Gate Arrays
(FPGAs), "all digital systems" for pick-up data processing
to determine position and tune have become commonplace.
This contribution compares the frequently used position esti-
mators used in the digital systems in terms of measurement
variance, bias and robustness to external interference. An
analytical beam model, along with simulated pick-up sig-
nal and actual pick-up signal from the SIS-18 synchrotron
are used for the comparison. The effect of precise position
estimation on the tune spectra is discussed.

INTRODUCTION
High precision position estimation requires the optimiza-

tion of the beam position measurement system in all the
stages of development, which starts from EM simulations to
optimize the pick-up design against unwanted resonances,
establishing linearity while minimizing the cost of manu-
facturing [1]. The mechanical construction and installation
of pick-ups with respect to the magnetic center of magnets
within the specified tolerances is also a challenging task. Fi-
nally, the electronics required for acquisition and processing
of the pick-up signals demand low noise and high dynamic
range as well as periodic and precise calibration. The typical
methods for signal processing and calibration are described
in [2–4]. In the recent years, the signal processing have
completely shifted to digital domain due to availability of
fast high resolution ADCs and FPGAs and this contribution
will focus on this aspect of position measurement system for
circular accelerators.
The concepts of pick-up position sensitivity and offset are
presented along with the typical signal spectra for bunched
and coasting beams in the next couple of sections. Following
that, the frequently used digital position estimation methods
are discussed and a new approach to position estimation
based on "linear regression model" is introduced. All the
presented methods are compared with an analytical beam
model, simulated beam data and the pick-up signal from
the SIS-18 synchrotron in terms of estimated position bias
and variance. The effect of position estimation methods
on tune spectra calculated from the turn-by-turn position is
discussed.

POSITION SENSITIVITY AND OFFSET
The pick-up position sensitivity and offset estimates are

obtained from the EM simulations [5] or on-bench wire
based measurements [6, 7]. The uncertainty in the position
sensitivity measurement is given by the precision of the
measurement equipment used for bench measurements and

simulation time/resources which are often < 0.1% of abso-
lute values as shown in [5, 8]. In careful pick-up designs,
the pick-up sensitivity is found to be constant within 0.1%
of the absolute sensitivity value in the frequency region
of interest [5]. Once the pick-up sensitivity and offset are
known, the beam center-of-mass can be determined from the
difference of the signal induced on opposite pick-up plates.
There are two important features of pick-up signal which
are relevant for digital position estimation a) Most of the
pick-up types are "capacitive" or AC coupled, which leads
to rejection of the DC component of the beam signal and
b) The signal is sampled with fast ADCs such that many
samples are acquired in each time interval for the position
measurement. Thus the problem of position estimation is
that of an overdetermined system whose low frequency com-
ponents are significantly suppressed. The lower cut-off is
given by the termination impedance of the pick-up [2].

PICK-UP SIGNAL SPECTRUM
The pick-up signal spectrum of a ring accelerator is unique

due to the periodic crossing of beam particles through the
pick-up. A beam of particles traversing the synchrotron or
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Figure 1: A bunched beam power spectrum of a U28+

bunched beam with 109 particles at injection energy in SIS-
18. 2qI0 is the shot noise level while blue dashed line repre-
sents the electronics noise. The Schottky bands are shown
for reference.

storage ring with a constant energy is referred to as coasting
beam. The beam is said to have no coherent longitudinal
structure due to absence of any longitudinal focusing. How-
ever, due to finite momentum spread, finite number of par-
ticles and periodic traversal of particles through the BPM,
signals proportional to the square root of number of parti-
cles are induced at the revolution frequencies. The power in
each revolution band is given by 2qI0, where q is the charge
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state and I0 is the beam current. They are called Schottky
signals due to their origin in shot noise [9]. When an ex-
ternal field imposes a longitudinal structure on the beam,
power is transferred from the DC component of the beam to
higher harmonics at the revolution frequency. Any harmonic
with sufficient power in the difference signal spectrum can
be used to obtain the position information. This coherent
power is proportional to the number of particles and is usu-
ally large enough for calculation of bunch-by-bunch beam
position measurement. Figure 1 shows the estimated power
spectra of a U28+ bunched beam with 109 particles at in-
jection energy. In comparison, the power in the Schottky
bands of the unbunched beam with the same current is also
shown. Though the beam position measurement usually im-
plies bunched beam position measurement; with high beam
intensities and long measurement times, Schottky signals
can be utilized for beam position measurements of a coasting
beam. Detailed introduction to pick-up signal spectra can
be found in [10].

POSITION ESTIMATORS
Each pick-up electrode signal is either individually sent

through an amplifier/attenuator chain or passive "hybrids"
are utilized to create sum and difference signals before am-
plifying the signal. Hybrids are preferred when the pick-up
signals are large and require to be attenuated before digitiza-
tion. The electronics chain is designed to match the pick-up
signal to the ADC input range, while the ADCs are selected
such that the effective number of bits ENOB is matched
to the amplifier noise. The sampling rate is kept as high
as possible while satisfying the criterion mentioned above.
The ADC selected for SIS-100 has 12 effective number of
bits and sampling rate of 250 MSa/s. A calibration scheme
is used to periodically correct the amplifier gain and offset
drifts as well as the ADC offset drift. This is performed to
eliminate the systematic biases in the measurement. The
N digitized signal samples from opposite electrodes are de-
noted by Ul, i and Ur, i , where i ∈ {1, N } denotes the sample
index.
There are two classical approaches which are frequently

used for calculation of beam position. The first and most
frequent approach referred to as integral method resurrects
the lost DC or baseline, which is lost due to AC coupling
of the pick-up [11]. The baseline of the signal from each
capacitive plate is individually determined from the samples
in between the bunches (See Fig. 4 and 7) . In frequency
domain, it translates to the reconstruction of the DC signal
from the higher harmonics (See Fig. 1). If the baseline of
each electrode is denoted by Bl and Br , the beam position of
the whole bunch < x > can be calculated from the difference-
over-sum ratio:

< x >
k
=

N∑
i=1

(Ul, i + Bl ) −
N∑
i=1

(Ur, i + Br )

N∑
i=1

(Ul, i + Bl ) +
N∑
i=1

(Ur, i + Br )
(1)

Here k is the pick-up sensitivity in mm units. Obviously,
this method is very prone to biases resulting from baseline
calculation.
The second position estimator is based on the power of indi-
vidual signals and uses the root-sum-square (RSS):

< x >
k
=

√
N∑
i=1

U2
l, i
−

√
N∑
i=1

U2
r, i√

N∑
i=1

U2
l, i
+

√
N∑
i=1

U2
r, i

(2)

This approach is a reasonable substitute to the earlier ap-
proach since the baseline restoration is not required. In the
frequency domain, this estimator weights each harmonic
with its magnitude, and thus the noise characteristics are
significantly better than integral method.
The third and the newer approach represents the position
estimation problem as the case of simple linear regression
and solves it with the ordinary least square (OLS) approach
which takes a simple closed form [12]. For the conciseness
of the formulation, the electrode signals are represented in
differenceUd, i = Ul, i−Ur, i and sum formsUs, i = Ul, i+Ur, i

and the estimator can be given as,

< x >
k
=

N ·
N∑
i=1

(Ud, iUs, i ) − (
N∑
i=1

Ud, i )(
N∑
i=1

Us, i )

N ·
N∑
i=1

U2
s, i − (

N∑
i=1

Us, i )2
(3)

This estimator has two important advantages over the
difference-over-sum approach. The first is the minimiza-
tion of the residuals in the least square sense. The second
is immunity to any slow offset errors which might occur
due to ADC offsets, external interferences or any amplifier
offsets. This is especially advantageous for operating in
asynchronous mode or closed orbit mode, when position is
calculated from long data sets.

Bias and variance
The bias and variance characteristics for each estimator

are evaluated using a simple triangular beam model analyti-
cally. The triangular model is chosen for the simplicity in
performing the error propagation calculations while captur-
ing many relevant features of a real beam. Figure 2 shows
the triangular beam model, where the dashed line with blue
dots represents the AC coupled signal from pick-up plates,
while the solid line with red dots represent the baseline re-
stored signal. σV is the std. deviation of the individual data
samples. VFS is the full scale voltage while A is the relative
amplitude of the signal with respect to the full scale voltage.
NS is the number of "signal samples" inside the triangular
bunch while NB is the number of "baseline samples" outside
the bunch. It should be noted that for a raw signal, the dis-
tinction between signal samples and baseline samples is not
clear since, baseline samples also carry position informa-
tion. Since the analytical calculations rely on this distinction,
perfect baseline restoration is assumed.
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Figure 2: Triangular beam model.

Using error propagation of independent samples, it can
be shown that for a perfectly restored baseline, the std. devi-
ation of the position calculated for a centered beam by the
estimators in Eq. 1, Eq. 2 and Eq. 3 are given by,

σ<x>

k
=
√
2 ·

( σV

A · VFS

)
·

√
NS + NB

NS + 2
(4)

σ<x>

k
=

√
3/4 ·

√
2 ·

( σV

A · VFS

)
·

1
√

NS + 3 + 2/NS

(5)

σ<x>

k
=

√
3
√
2
·
( σV

A · VFS

)
·

√
NS (NS + NB)

(NS + 2)( 14 N2
S
+ NS NB)

(6)

The detailed calculations can be found in [13]. Figure 3
shows the std. deviation as a function of ratio of number
of baseline samples NB to the number of signal samples
for each method. The number of signal samples within the
triangular beam is NS = 80, and the number of baseline
samples is varied. It gives an interesting insight on how each
estimator treats the baseline samples. The std. deviation of
the integral method increases with the addition of baseline
samples since the samples do not contain any position in-
formation. The std. deviation of RSS method is shown to
be independent of inclusion of baseline samples. The OLS
method, calculates the slope by fitting the difference signal
to the sum signal, and each point improves the estimate, in-
cluding the baseline samples. This is evident in reduction
of the std. deviation as more baseline points are added.
The outcome of the triangular analytical beam model is

compared with a beam generated with MADX particle track-
ing [14] through the SIS-18 lattice. The generated beam
traverses the SPICE model of the capacitive pick-up and
acquisition electronics. The simulated pick-up data has the
same characteristics as the SIS-18 injection pick-up signals.
Figure 4 shows the bunches along with the processing win-
dows, in order to select the different number of baseline sam-
ples for the position calculation. The positions are calculated
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Figure 3: Predictions of the std. deviation of positions cal-
culated for the analytical beam model against the ratio of
number of baseline samples to number of signal samples
(NS = 80). Each std. deviation value is normalized to the
smallest value.
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Figure 4: The simulated beam and different processing win-
dows with selected samples for position calculation.

for both restored and non-restored data for 800 consecutive
bunches. Figure 5 shows std. deviation of the calculated
positions as a function of the baseline samples and signal
samples for comparison with Fig. 3. The restored beam case
can be directly compared with the analytical model. The
negative values of NB/NS depict the cutting into the bunches
or removing some signal samples. The behavior is similar to
the predictions from the analytical model, the OLS estimate
improves with inclusion of the baseline samples, while the
performance of integral method worsens with inclusion of
more samples. The crossing point where OLS produces bet-
ter results compared to the integral method is at NB/NS = 0
in comparison to NB/NS = 0.5 in case of analytical model.
The position values obtained from RSS has the smallest
std. deviation and is independent of the number of samples
included in the calculation. For NB/NS > 0.6, the OLS
closes into RSS performance. Figure 6 shows the mean of
the calculated position with restored and non restored beam.
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Figure 5: Std. deviation of the position calculated from the
simulated pick-up data.
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Figure 6: Mean of the position calculated from the simulated
pick-up data.

All the algorithms predict the true position value correctly
in the scanned range.
Finally, the actual beam data is chosen for comparison

with the predictions of the analytical model and results from
the simulated beam. The beam data is carefully chosen at
the injection plateau of SIS-18 in the vertical plane where no
transverse oscillations and beam drifts were visible. This is
important to distinguish the variance due to the electronics
noise from actual beam oscillations or beam drifts. Figure 7
shows the longitudinal bunch structure along with the pro-
cessing windows. 1000 consecutive bunches were used to
calculate the positions. The std. deviation and mean for
the positions calculated by each algorithm are shown in Fig-
ures 8 and 9 respectively. The integral algorithm expectantly
diverges in the non-restored beam case. Even in the case of
baseline restoration, it has the largest std. deviation, and thus
offers the least position resolution of all methods. The sur-
prising outcome is that the performance of the OLS method
has bettered the RSS method in the whole range of NB/NS

in contradiction to the simulated beam data. On further in-
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Figure 7: The pick-up data from SIS-18 injection beam along
with the processing windows with samples used for position
calculation.

vestigation, a slow 5KHz common mode interference (CMI)
on the pick-up signal seems to cause the difference. OLS
method strongly suppresses any common mode signal while
the RSS output is disturbed by external interferences. In the
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Figure 8: Std. deviation of the position calculated from the
SIS-18 injection beam pick-up signal.

mean calculation, the baseline restoration seems to produce
a bias in the estimated position for integral and RSS meth-
ods, while OLS estimates are independent of the baseline
restoration. It is clear from the results in this section that the
integral method is not suited for position calculation. In addi-
tion, the baseline restoration is a non-linear latent procedure
which seem to cause bias under external interferences, and
is actually not required by both RSS and OLS procedures.
One can thus conclude, that the baseline restoration and the
integral method should be avoided for position calculation
altogether. Rest of the document will only deliberate on the
RSS and OLS methods.

Robustness
The robustness of the position estimators in this context is

defined as its ability to cope with electronic baseline drifts
e.g. ADC or amplifier offset drifts, external electromagnetic
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Figure 9: Mean of the position calculated from the SIS-18
injection beam pick-up signal.
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Figure 10: The effect of commonmode and differential mode
interferences on the position estimate by RSS and OLS fit.

interference, bunch detection errors and dependency on the
external signals. The performance of RSS method with the
SIS-18 beam data in presence of common mode interference
shown to be poor in the last section. Here we illustrate the
performance of RSS vs OLS method to common mode in-
terference (CMI) and differential mode interference (DMI).
Non-beam related constant offsets are added to the simulated
beam signal shown in Fig. 5 in common mode and differen-
tial mode. First the common mode signal in the units of % of
full scale voltage are added and mean of estimated position
is plotted in Fig. 10. The OLS method is immune to the CMI
while the RSS has an asymmetric response depending on the
the sign of CMI. Similarly, the effect on positions calculated
by OLS to DMI is negligible while the gradient for the posi-
tion calculation error for the RSS method to DMI is large. In
real beam scenario, these interferences are unavoidable, and
the ability of OLS to suppress them is a big advantage over
the RSS method. The next section emphasizes this point
further.

TUNE CALCULATION
Tune is the measure of transverse phase advance of the

beam after one turn around the synchrotron. The discussions
on the robustness of algorithms to non-beam related interfer-
ences become extremely important when tune from bunch
by bunch position data since any arbitrary external interfer-
ence can significantly modify the tune spectrum as clearly
suggested by Fig 10. Figure 11 shows the tune spectra cal-
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Figure 11: The vertical tune spectrum calculated for an ex-
cited beam at SIS-18 injection from the positions calculated
from (a) Integral method (b) RSS method (c) OLS method.

culated from the positions calculated by (a) integral method,
(b) RSS and (c) OLS on the baseline restored pick-up data
of U28+ beam which is excited with a wideband noise ex-
citer. The spectra from integral method and power method
look similar except for the noise floor, which is higher for
integral method. However, the spectra from OLS fit method
is strikingly different the other methods, and demonstrates
its ability to suppress external disturbances and improve the
tune spectrum estimate.

SUMMARY
A new regression based approach to position calculation

is presented. It is compared with traditionally utilized esti-
mators with the help of triangular beam analytical model,
simulated pick-up signals and SIS-18 injection beam pick-up
signals. The performance of the new approach is superior to
the traditional algorithms. The robustness of the new OLS
based position estimator to external interference is of special
significance for bunch-by-bunch position calculations and
betatron tune measurements.
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