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Abstract
Machine learning (ML) techniques are widely used in

science and industry as a powerful tool for data analysis
and automation. Currently, in accelerator physics ML is
represented as a young research field, demonstrating mixed
results in the latest attempts. The presented work is devoted
to exploration of appropriate ML methods for beam diagnos-
tics. The target is to provide an overview of ML techniques
which can be applied to improve beam diagnostics and gen-
eral accelerator performance. Besides the results of ML
tools currently used in modern accelerators and evaluation
of these tools, we also demonstrate possible concepts with
the potential for further investigation and give recommenda-
tions on efficient use of ML techniques in accelerators.

HISTORICAL MOTIVATION

Traditional Optimization Techniques
Various optimization problems arise in modeling and op-

eration of accelerators. Multi-parameter optimization can be
performed using well established methods such as simplex,
as it was shown at KEKB [1] applied on minimization of
vertical emittance in injector linac. Another examples for
the application of simplex as optimization technique for ac-
celerators can be found in [2], where the method was applied
on tuning of beam delivery system in CLIC simulations.

Linear optics corrections using optimization algorithms
to find a minimum beam size with multi-parameter knobs
as input were performed already in 1993 [3]. Luminosity
maximization and beam lifetime are typical multivariate
optimization tasks also in circular colliders [4, 5].

For light sources, such methods as random-walk optimiza-
tion are being used to reduce the vertical beam size [6]. Also
online optimization using various measures of accelerator
performance as objective functions is being successfully
applied in operation [7]. An illustrating example towards
applying ML is the development of machine based optimiza-
tion using genetic algorithms, which have been used as well
in accelerator design [8–10].

Limitations of Traditional Methods
The described examples demonstrate successful perfor-

mance of traditional optimization tools in applications on
linear optics corrections and problems with limited amount
of optimization targets. Bigger challenges emerge when di-
agnostics of complex non-linear behavior is required and
several variables have to be taken into account as final objec-
tive. The amount of time and computational power required
by traditional methods might become unacceptable for future
accelerators such HE-LHC and FCC. The main limitation of

traditional optimization methods is that the objective func-
tion or specific rules and thresholds have to be known. In
opposite, Machine learning (ML) methods can learn from
given examples without requiring explicit rules.

RELEVANT MACHINE LEARING
CONCEPTS

ML techniques aim to build computer programs and algo-
rithms that automatically improve with experience by learn-
ing from examples with respect to some class of task and
performance measure, without being explicitly programmed
[11].

Depending on problem and existence of learning exam-
ples, different approaches are preferred. If pairs of input and
desired output are available, an algorithm can generalize the
problem from the given examples and produce prediction for
unknown input. ML algorithms that learn from input/output
pairs are called supervised learning algorithms. Opposite
to supervised learning, unsupervised learning algorithms
solve the tasks where only input data is known. Unsuper-
vised learning is suitable for the problems such anomaly
detection, signal denoising, pattern recognition, dimension-
ality reduction and feature extraction. In the following a brief
overview on significant machine learning concepts that can
be used as supervised as well as unsupervised approaches is
presented.

Artificial Neural Network
Artificial Neural Networks (ANNs) are well suited for

learning tasks, where data is represented by noisy, complex
sensor signals and the target output function may consist of
several parameters. A basic ANN consists of a single pro-
cessing unit (neuron), that takes the weighted inputs and an
additional activation function to introduce the nonlinearity
in the output. For more complex practical problems, ANNs
are composed of several interconnected hidden layers with
multiple neurons stacked.

ANNs can be used for both regression and classification
problems. In case of classification the output can be either a
class label or a probability of an item belonging to a class.
The learning of ANN is performed using backpropagation
algorithm [12] on a set of examples. For each example the
training algorithm computes the derivatives of the output
function of the network. The obtained gradients with respect
to all weights are then used to adjust the weights in order
to achieve a better fit to the target output. In backpropa-
gation stochastic gradient descent or one of its improved
extensions Adam [13] and AdaGrad [14] is applied as opti-
mization method in order to minimize the loss between the
network output values and the target values for these outputs
by updating the connection weights.
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One interesting property of the backpropagation based
learning is its ability to discover useful intermediate repre-
sentation inside the network. Features that are not explicitly
given can be extracted using layers between input and output
layers (hidden layers). Thus, properties of the input that
are most important for the learning can be discovered. This
ability is a great advantage of this method in contrast to ML
techniques that use only predefined features. ANNs with
many hidden layers called deep neural networks are able to
use fewer neurons per layer and have a better generalization
ability [15], however the optimization of these networks is
not trivial. There are no strict rules for building ANN ar-
chitecture (number of neurons, layers, initial weights) as it
usually heavily depends on a particular problem. However,
techniques to adjust the architecture parameters exist. A de-
tailed overview on various ANN architectures and training
methods and their suitability for different applications can
be found in [16–18]. A broad presentation of concepts and
applications of ANN to particle accelerators is given in [19].

Decision Trees and Ensemble Methods
Decision tree learning is a method for approximating

discrete-valued target functions, which are represented by
decision trees. Considering the case of classification, deci-
sion trees sort down the input instances from the root to leaf
nodes. Usually, the splitting is based on one of the input
parameters or a specified set of rules [20, 21]. Each leaf
corresponds to one class representing the most appropriate
class label. For the regression the leaf nodes correspond to
target values.

Using a single tree, a model might not be able to generalize
and perform poorly on unexplored sample. One possible
solution to overcome this problem is to build ensembles of
trees [22]. By training several slightly different models and
taking the average prediction, the variance of the model can
be reduced.

Compared to ANNs, decision trees are simpler to interpret
and to understand its way of obtaining the final results and
the underlying process, e.g through the feature importance
analysis. Feature importance analysis helps to understand the
contribution of each input parameter to the correct decision
during the training process. The ability of decision trees to
evaluate the importance of input parameter is a significant
advantage of these algorithms. Knowing the importance
of the features we can reduce the model complexity and
simplify the data preprocessing steps without significant
accuracy loss.

Clustering
Cluster analysis includes methods of grouping or separat-

ing data objects into clusters, such that dissimilarity between
the objects within each cluster is smaller than between the
objects assigned to different clusters [23, 24]. Cluster analy-
sis is used in a wide range of applications. Data clusters can
be considered as a summarized representation of the data,
such that group labels can describe patterns or similarities
and differences in the data. Moreover, clustering can be

used for prediction, such that classification of unseen data
is performed based on knowledge about the properties of
present data and by evaluating their similarity to the incom-
ing data sample. The significant benefit of cluster analysis
is the unsupervised learning approach, which means that no
labeled data is needed to find a solution.

The simplest and the most commonly used clustering
algorithm is k-means [25], which is based on centroid search.
Another kind of clustering algorithms are the density-based
algorithms such DBSCAN [26], that views clusters as areas
of high density separated by areas of low density, instead of
looking for the centroids. Decision tree based methods also
can be applied for cluster analysis using the data splits based
on different features. Most of cluster analysis techniques
allow to build clusters in a multidimensional space.

Apart from classification and pattern recognition, clus-
ter analysis can be used as denoising method looking for
abnormalities in the signal. Moreover, building clusters com-
bining a large set of different observables can simplify the
data visualization and manual analysis, such elimination of
outliers in the measurements and detection of anomalies.

OVERVIEW ON CURRENT
APPLICATIONS

Meeting the demand of experimenters induce various chal-
lenges for accelerator design in general and in particular for
beam control and diagnostics. Considering impressive re-
sults of ANNs applied in various scientific fields [27–31],
among others in HEP [32] and the increase in available com-
putational power, ML can cast the light on novel solutions for
these challenges. In the following we demonstrate some ML
applications currently being used in accelerator technology
and ongoing research on potential ML based approaches.

Optimization and Prediction
A complex system such as an accelerator, which beam

dynamics exhibits nonlinear response to machine settings
can be considered as a typical ML task. ML methods are es-
pecially suited for non-linear and time-varying systems with
large parameter spaces. Due to the constant increase of ma-
chine design complexity and development of new interacting
systems, traditional techniques might become insufficient.

ANN based application has been successfully applied at
the Linac Coherent Light Source (LCLS) to predict x-ray
pulse properties using electron beam and x-ray parameters as
input [33]. The method is general and can be applied at any
XFEL facility to obtain fast x-ray diagnostics. ANN is able
to decode complex hidden correlations between parameters
obtained from slow diagnostics such as photon energy and
properties measured by fast diagnostics. For the training,
small samples obtained at low repetition rate are used to
predict complex diagnostics at a high repetition rate.

Similar approach has been applied at TEU-FEL by train-
ing an ANN with controllable machine settings such RF
power and solenoid strengths as inputs in order to produce
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prediction of electron beam parameters such beta functions
and emittance [34].

A special kind of ANN, convolutional neural networks
(CNN) [35] have been applied at FAST on image based
diagnostic during beam operation [36]. A combination of a
CNN and a feed-forward NN yields promising results for the
prediction of beam parameters on simulated datasets. The
model uses simulated cathode images, solenoid strengths
and the gun phase as inputs and produces a prediction for
various downstream beam parameters.

Extremum Seeking (ES) technique [37,38] in combina-
tion with ML is being applied to accelerator tuning and
optimization providing promising results. In this application
ANN is used for fast tuning in order to obtain a close approx-
imation for the target settings. ES is used for beam-based
adaptive feedback to track the actual time-varying optimal
parameter settings. The advantages of this method are the
model-independent approach, the ability to perform the tun-
ing on many coupled parameters and handle time-varying
noisy data.

Another example concerning the prediction of beam pa-
rameters is the application of various ML algorithms to the
problem of inferring the actual beam profile width from mea-
sured profiles that are distorted by space-charge effects [39].
The promising results obtained on simulations data show
the potential of the method to be further investigated on real
measurements in order to reduce cost of Ionization Profile
Monitors.

Automation of Operation
Often there is a need to introduce various experiment-

driven settings. In this case a large amount of free parameters
has to be taken into account in order to meet the requirements
and find optimal machine settings under given limitations.
Only few parameters can be processed by a human at once
and it is not feasible to produce forecasts taking into account
all possible factors and correlations. Moreover, humans can
perform differently on the tasks where the decisions can be
subjective, which might lead to significantly different results.
Also the automation of routine tasks could bring significant
improvements into daily operation, such that the focus of
operation can be transferred to complex tasks and rare events
that require an expertise.

Apart from ANN, it is also possible to apply other kinds of
regressors or classifiers in accelerator control such Gradient
Boosting classifier [40] as it was shown in beam loss pattern
classification for LHC [41]. The beam loss maps performed
in controlled conditions are used in order to train a model to
classify the type of losses during the LHC machine cycle.

Another example of ML based automation is the auto-
matic alignment of collimators in SPS and LHC [42]. The
method computes optimum angular settings for the collima-
tors without human intervention. Fully automated alignment
was achieved after the introduction of the ML based detec-
tion of alignment spikes in the losses which are used in order
to determine if a collimator needs to be moved.

Table 1: Performance of Trained Models

Injection optics
Model MAE [1 × 10−5 m−2] Explained σ2

Random Forest 0.005 0.99
OMP 0.04 0.97
Neural Network 0.35 0.38

β∗ = 40 cm
Model MAE [1 × 10−5 m−2] Explained σ2

Random Forest 0.005 0.99
OMP 0.21 0.76
Neural network 0.33 0.47
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Figure 1: Random Forest prediction result on a ran-
dom sample from the test set giving mean absolute error
0.02 × 10−5 m−2.

Lattice Imperfections Correction
Attempts to build beam diagnostics and beam control sys-

tems using ML have been made already in the past decades
[43–45]. The application described in [45] was built to de-
tect dipole errors aiming to develop rapid commissioning.
In this application, the dipole errors are obtained from the
deviation of the measured beam position from the computed
one. The simulations and tests have been performed on a
relatively small machine (8 FODO cells, 8 BPMs), however
the accuracy of the trained models decreased significantly
after introduction of more than 2 dipole field defects. Any-
way, given the early stage of ANN technology in that time,
the obtained results have shown the potential of ML solution
to be applied in beam control systems.

Recently, we applied ML on optics correction at LHC to
predict the correction knobs settings required to cancel the
quadrupole field errors [46, 58]. In this case, optics correc-
tion is defined as a regression problem that can be solved
by training a model using past measurements or simulations
and its corresponding corrections (supervised learning).

In order to create a training set, random errors are in-
troduced into the MADX-variables that represent physical
circuits. In real measurements the optics errors are caused
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Figure 2: Expected beta-beating after applying corrections
computed with linear response matrix and Random Forest
regressor on simulated measurement.

by individual magnets instead of the circuits, in the follow-
ing study we neglect this since the corrections can be done
only using the circuit variables. The differences between the
nominal model phase and the phase produced by perturbed
simulations are provided as input and the corresponding er-
rors as output of the model. Simulations data set of 10000
samples was divided into train and test set (60% and 40%
respectively), each sample pair consist of 1046 inputs (num-
ber of BPMs in both planes) and 190 outputs (correction
variables).

Comparison between logistic regression, ANN, Orthogo-
nal Matching Pursuit [47] and Random Forest [48] models
trained on two different optics setting are shown in Table 1.
Random Forest algorithm achieves the most accurate predic-
tion on test data set, the behavior on arbitrary sample from
the test set is shown in Fig. 1.

The comparison to the traditional response matrix method
as implemented in LHC [49,50] is performed on an indepen-
dently simulated measurement perturbed by random errors
with the absence of BPMs noise and triplet errors. The differ-
ences in obtained global optics corrections are shown in Fig.
2. Random Forest achieves an overall better correction on
the given simulation and demonstrates that further enhance-
ment in traditional method are required in order to treat the
errors around interaction points (IP). The problem of the
traditional method can be also related to the linear behavior
of the response matrix, concerning possible nonlinearities
in these regions.

Further improvements in ML based optics correction can
be achieved using more realistic simulations that include
other sources of optics error. The quality of the model
can be significantly improved by combining different op-
tics models in one training set in order to achieve better
generalization. Potentially efficient approach for the training
is Transfer Learning, a method where a trained model can
use the learned representation to solve similar tasks after be-

ing re-trained on a very small data set [51, 52]. Thus, small
amount of real optics measurements and performed correc-
tions can be used to tune the model trained on simulations
to significantly increase the model quality.

Anomaly Detection
Anomaly detection techniques are suitable for the detec-

tion of unusual events that do not conform to expected pat-
terns. They also can be used to identify outliers and remove
noise. Anomaly detection can be performed using classifica-
tion on labeled data (supervised learning), cluster analysis
(unsupervised learning) or applying semi-supervised learn-
ing methods such as autoencoder, a special ANN represent-
ing the model trained on normal data set and then detect the
anomalies based on the value of the loss function generated
by the representative model on the given test sample [53].

An early example on anomaly detection in beam diagnos-
tics in storage ring (Pohang Light Source) is the application
of ANN to predict the orbit at particular BPM based on mea-
surements at other BPMs [54]. A large deviation between
measured and predicted orbit should mark malfunctioning
BPM.

An example for anomaly detection using cluster analysis
is the detection of faulty BPMs at LHC based on harmonic
analysis on turn-by-turn data [55]. The main issue regarding
the problem of faulty BPMs is the appearance of unphysical
data in the reconstructed optics functions. Most of the noise
can be removed using traditional methods based on SVD
and FFT [56] and manual cleaning, however, faulty data
samples still can be observed in the optics functions. Since
no labeled data is available and the data analysis has to be
performed on multidimensional parameter space, clustering
appears as an effective solution. The analysis as shown in
Fig. 3 is performed on a three dimensional parameter space
containing the betatron tune, the amplitude of the measured
oscillations and the noise to amplitude ratio. The data is
normalized to the range [0,1] and separated into IR and Arcs
BPMs due to the different data points distribution in these
regions.

Since the appearance of outliers in the data affects the com-
putation of the mean of parameters, the algorithms based
on centroids search such as K-means are not appropriate
for our problem. Instead of centroid-based algorithms, DB-
SCAN and Isolation Forest (IF) [57] have been applied on
the turn-by-turn data after harmonic analysis. Compared
to the application of DBSCAN [58] better results could be
achieved using IF algorithm. IF uses an ensemble of ran-
domized decision trees averaging the path lengths, which
represent the number of splits required to isolate a data point.
Shorter paths are produced for anomalies. Due to the ran-
domization and combination of several decision trees, the
method performs better than single-model methods. An-
other advantage of IF is that the algorithm requires only the
number of trees and the proportion of outliers in the data set
(threshold for the decision function) as input parameter.

This method is fully integrated into optics measurements
at LHC and has been successfully used during commission-
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Figure 3: 2D-projection of 3D analysis with IF on arcs mea-
surements of tune, amplitude and signal noise in horizontal
plane. The data is scaled to the range [0,1]. The triangular
points correspond to BPMs marked as anomaly.
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Figure 4: Beta-beating from the measurement cleaned with
SVD before and after applying IF. IF decreased the number
of unphysical outliers in the computed optics and signifi-
cantly reduced the errorbars.

ing and machine developments under different optics set-
tings in 2018. An illustration of results obtained during
commissioning is presented in Fig. 4. The method can be
further improved by introducing an adaptive decision func-
tion threshold based on corresponding normality score, that
can be obtained for each sample during training process.
The decision function can be then adapted depending on the
numbers of BPMs lying under the threshold.

CONCLUSION
The understanding of the concepts in the field of ML and

AI provides new opportunities for incorporating this disci-
pline into accelerator technology, however the benefits in
comparison to traditional tools and the efficiency of intro-
duced ML and AI based methods need careful evaluation.

ML is well known for surpassing human performance in
some specific tasks such fraud detection, forecasting of mar-
ket trends and risks, online recommendations, recognition of
voice and images and in general in discovering correlations
in large scale datasets. Most of the named tasks can find
analogies in beam control and diagnostics. For example,
anomaly detection methods applied for fraud detection can
be used to detect defects in the instrumentation and forecast-
ing techniques can be transfered to predict beam behavior
during operation.

Typical characteristic of supervised ML tasks is the ability
to deal with large amount of structured data. This leads to the
conclusion that the implementation of supervised ML solu-
tions requires large existing training datasets or development
of appropriate data acquisition tools in order to provide the
data in "machine-understandable" format, which is not nec-
essarily available out-of-the-box since the traditional control
systems usually imply human intervention. The effort that
has to be put on automation such as building data acquisition
infrastructure and training of complex models might be more
costly and resources expensive than traditional methods. On
the other hand, automation of some particular systems using
ML as it was done for collimators alignment at LHC [42]
is very effective and can save operational resources. Diag-
nostics of beam losses and beam optics corrections can also
benefit from ML as it was shown in [41] and [58], since
these methods rely on already existing data from dedicated
measurements.

The ability of unsupervised learning to discover unknown
patterns in the data is useful especially for anomaly detection
tasks such as detection of instrumentation defects, e.g. using
clustering for faulty BPMs signal. Such methods can be
performed directly without training in arbitrary accelerator
systems.

Further Applications

Besides presented applications, another field where we
can potentially benefit from ML are highly complex sim-
ulation tasks which demand large computational power or
even are not solvable using the available resources. The
predictive power of ANNs could offer an alternative solu-
tion for problems such as dynamic aperture computation
avoiding costly turn-by-turn simulations. Moreover, differ-
ent ML methods can be potentially used for maintenance
of accelerators, such that system defects can be predicted
based on deviations from expected performance and required
intervention can be performed prior to actual failures [59].
Beam lifetime optimization is another task where ML tech-
niques can be potentially applied [60]. Such methods as
decision trees and autoencoders appear suitable for analysis
of beam parameters correlations and their importance for
beam lifetime prediction and maximization.
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