
DATA DRIVEN CAMPAIGN MANAGEMENT AT THE
NATIONAL IGNITION FACILITY

Douglas Speck, Bruce Conrad, Steven Hahn, Paul Reisdorf, Scott Reisdorf, LLNL, Livermore, CA
94550, USA

Abstract
The Campaign Management Tool (CMT) Suite

provides tools for establishing the experimental goals,
conducting reviews and approvals, and ensuring readiness
for a National Ignition Facility (NIF) experiment. Over
the last two years, CMT has significantly increased the
number of diagnostics that it supports to approximately
40. Meeting this ever increasing demand for new
functionality has resulted in a design whereby more and
more of the functionality can be specified in data rather
than coded directly in Java. To do this support tools have
been written that manage various aspects of the data and
to also handle potential inconsistencies that can arise from
a data driven paradigm. For example; drop down menu
selections for our experiment editor are specified in the
Part and Lists Manager, the Shot Setup Reports that lists
the configurations for diagnostics are specified in the
database, the review tool Approval Manager has many
aspects of it’s workflows configured through metadata
that can be changed without a software deployment, and
the Target Diagnostic Template Manager is used to
provide predefined entry of hundreds setup parameters.
The trade-offs, benefits and issues of adapting and
implementing this data driven philosophy will be
presented.

BACKGROUND AND SYSTEM
COMPONENTS

The suite of applications discussed here are used to set
up and approve experiments on the NIF. In the context of
this paper, an “experiment” is an XML document that
stores all of the settings that experimenters are able to
configure for an individual laser shot event on the NIF.
These settings are functionally associated into “data
groups” that define the granularity at which review and
approval occurs for the experiment. For example, all of
the laser energy and timing settings form a data group, the
beam pointing settings are a data group, the target setup is
another, and each target chamber diagnostic device setup
is its own data group. A “campaign” in the CMT suite is
a collection of experiments associated under a given
campaign name.

The applications in the suite divide workflow into three
broad, nominally consecutive, phases: setup, approval,
and readiness. Within the overall lifecycle of an
experiment from conception through post-shot analysis,
these phases occur in the interval from several weeks to
several hours before a shot is taken.

Tools in the CMT Suite
The Campaign Management Tool, CMT, is the

experiment setup editor. A Java Swing application, CMT
provides a spreadsheet-like interface to the experiments in
a single campaign, with each experiment represented in a
single column. As data group setups in an experiment are
completed in CMT, they are submitted for review and
approval. This process is managed by the Approval
Manager (“AppMan”), a Java web app that sequences the
approval workflow, provides approval status information,
and provides links to reports needed for review and
approval. Experiment readiness is the evaluation of the
state of the NIF facility with respect to the requested
configuration for an experiment. Readiness is monitored
via another web app, ConfigChecker, which depends on
applications outside of the CMT suite (LoCoS and
Glovia) that provide up-to-date facility configuration
information.

Other applications provide specialized functionality to
facilitate key aspects of the suite workflow. The Parts and
Lists Manager (PLM) is a database front end through
which the project manages most of the setup data option
values exposed in CMT selection menus. A close cousin
of PLM, the Target Selection Manager (TSM), manages
the particular subset of setup menu data having to do with
target system configurations. ShotSetupReports is the
report generator for the suite, called from within AppMan
to access experiment XML and expose setup selections
via electronic reports. The Target Diagnostic Template
Manager (TDTM) simplifies and shortens the experiment
setup process by permitting CMT users to populate
reusable setup templates for most of the target diagnostics
in use at the NIF. The Pulse Shape Editor (PSE) provides
a similar reuse capability for laser pulse shapes, as does
the Beam Pointing Assistant (BPA) for pointing setups.

Motivation for a Data-driven Architecture
CMT is the oldest and largest application in the suite,

developed around a core architecture that was laid down a
decade ago. That architecture has been robust and
extensible enough to accommodate tremendous growth in
both the number of experiments configured as well as in
the number of target diagnostics deployed at the NIF.
Nevertheless, over the course of its evolution, both logic
and data that were initially defined in the CMT code base
have been migrated into other applications and data
sources, respectively. The value in moving logic into
other applications is that it keeps CMT focused as much
as possible on being an experiment editor, which pays off
in a relative reduction in complexity and the manifold
benefits which accrue from that. Thus were born each of

*This work performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. #LLNL-ABS-632634, LLNL-CONF-644521

Proceedings of ICALEPCS2013, San Francisco, CA, USA FRCOAAB04

Experiment Control

ISBN 978-3-95450-139-7

1473 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

the CMT satellite applications PLM, TSM, PSE, BPA,
and AppMan. The benefit associated with moving data
out of the CMT code base and into external sources is not
in simplifying CMT, since in fact this generally adds code
and complexity to CMT, but in making the data accessible
via well-defined interfaces where it can be updated
without the expense of updating CMT. The expense of
updating CMT is incurred in the resources required to
develop, test, and deploy each CMT release, whereas
modifying data stored in a database requires only well-
defined update operations and comparatively simple
verification testing. Subsequent sections of this paper will
examine the benefits and tradeoffs of key thrusts of our
data-driven evolution.

PARTS AND LISTS MANAGER
Over time, there are two major drivers for change we

experience in the Campaign Management software
project: the development of new target chamber
diagnostic systems, and the steady stream of resource
changes within individual diagnostic systems. New
diagnostics generally necessitate matching creation of
new elements of supporting software. However, resource
changes within individual diagnostic systems require
configuration changes rather than design changes (for
example, new detector filters to accommodate more
energetic implosions). Changes of this sort are readily
realized in data-only updates so long as the software is
architected to enable this. PLM and the interfaces it
provides represent a key realization of our efforts to
implement such an architecture.

The Data that Drives the Setup
Setup selections in CMT generally fall into one of two

types: numbers within a range (Fig. 1), in which the
desired value is typed directly into the field, and
selections from a list of discrete entries in a pulldown
menu (Fig. 2). Both types are managed internally as
lists. For the former, the list typically contains three
entries: a minimum, a maximum, and a step size. For the
latter, the list contains the set of discrete selections. Note
that each list may have a set of additional attributes on
each of its entries particular to that list, depending on
required functionality.

Figure 1: Numeric setup data entry

Figure 2: Discrete setup data entry

These lists are maintained in relational database tables.
PLM provides a web interface through which the list data
are interactively managed, and it provides a web service
interface through which CMT queries the lists during its
startup processing. Once CMT has completed startup it
has a copy of each list in memory and it no longer
requires a connection to PLM. This approach supports a
design goal of CMT which is to permit users to launch
CMT then disconnect from the network and continue
editing experiments in a campaign. Conversely, it also
means that users must restart CMT to see changes in
setup data that were submitted after their currently
running instance of CMT was launched.

Challenges
The overwhelming benefit of this data-driven approach

to managing experiment setup data selections is the low
cost of adding or changing data compared to the cost of
deploying new code releases to accomplish the same end.
Notwithstanding that advantage, the data-driven approach
does carry its own challenges, even if they are often of the
“nice to have” variety in the sense that they’re exposed by
the increased ease and rate of making changes.

One such challenge is the sheer proliferation of lists.
Having developed an architecture and applications to
manage setup data, all new development makes use of
PLM. In reality, even though data changes for one list or
another happen every week, the vast majority of lists
rarely if ever change. List processing is relatively
expensive, absorbing on the order of 30 seconds of startup
processing each time CMT is launched, so there is
considerable overhead for a benefit that is realized in
practice on relatively few lists. We recently completed a
major refactoring of the list management code and
interfaces to achieve better than a 50% reduction in
startup list processing time, and additional changes are
under consideration.

Another challenge is stale experiment data. Once a
user selects a value for a given setting, the experiment
keeps its own copy of that value. If a subsequent change
in PLM eliminates that value or changes an associated
attribute, all experiments that retain copies of the old
value become stale, which can cause validation errors.
These in turn interrupt approval workflow and necessitate
extra effort to update settings and conduct additional
setup reviews. Of course such errors could occur as well
before PLM existed, but the increased effort required to
change available settings under the earlier design coupled

FRCOAAB04 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1474C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

with the existence of considerably fewer diagnostics
combined to suppress, relatively, the rate of change and
incurred a smaller incidence of stale data.

As it is with software bugs, so too is it the case that
data bugs (i.e. stale data) have less impact the sooner we
catch them in the experiment lifecycle. Since PLM is the
point of entry for editing setup selections, we know
directly when the potential for stale data is created by an
editing operation that changes an existing entry. We have
created a capability within PLM to track experiment
references to the values maintained in PLM. Whenever a
value is changed, we know immediately what
experiments are affected. A job runs every five minutes
to process experiments that have been updated in that
interval and detect any that have stale references. In a
typical day, this processing consumes about five minutes
of wall clock time. Currently we expose the data in a
report available through AppMan. In coming months we
are planning to introduce a new notification service that
will keep track of all CMT desktop clients that are on the
network. One way we plan to take advantage of this
service is to enable notifications to users editing
experiments that have stale data which will enable them
to correct stale data at the earliest possible moment.

Finally, we experience a minor challenge with PLM
data arising from our use of multiple independent
computing environments, each with separate deployments
of a more or less complete NIF software ecosystem.
There are four primary environments: Development,
Integration, Formal Test, and Production. To the degree
that data was embedded in the CMT distribution, the act
of deploying a particular revision to multiple
environments imposed a consistent body of setup data in
those environments. With our present architecture, users
are free to modify setup data as they need to in support of
their operating goals in each environment (which do vary
between environments). Still, it is generally helpful, and
not infrequently necessary, to migrate data between
environments. A straight table copy will not suffice,
since the primary keys are not portable and the schemas
may not match. As a solution for this, we have developed
a capability to transfer data through specially formatted
Excel spreadsheets that are both written and read by
PLM. This process is flexible enough to permit updates to
individual columns of specific records or to migrate entire
tables.

SHOT SETUP REPORTS
Our report generator, ShotSetupReports, provides

reports in HTML and Excel formats that unpack the setup
data defined in the experiment XML. There are specific
reports for each diagnostic, the laser setup, beam pointing,
etc., i.e., each of the data groups, in addition to some
other specialized reports.

ShotSetupReports employs a novel and highly flexible
data-driven design in which the stored data are scripts that
are run against CMT experiment XML and render
formatted data to a web page or Excel. In use for
approximately two years, ShotSetupReports has by now

matured fully so that actual code deployments are rare
and changes to support our ever-evolving target
diagnostic systems consist of nothing more than database
updates.

There are three principal components to
ShotSetupReports: the ShotSetupReports Java application
which, when invoked through a URL retrieves experiment
XML and executes the identified setup report script; an
admin web page that consists most prominently of a setup
report script editor; and the report scripts themselves,
stored in a database. A fourth component is a web page
front end to the application through which any of the
available reports can be invoked. This interface is not
used as a production tool, since typical users invoke the
reports via links in Approval Manager after they’ve
loaded a particular experiment, but the web page provides
a simple interface to run reports for any experiment and
also provides a place to demonstrate reports under
development before they are finalized for production use.

There is not much to discuss in terms of issues or
tradeoffs for this application; it is an unqualified success.
The scripts are written in HTML and Velocity Template
Language [1], providing a rich, flexible, and extensible
functional foundation to draw from. Scripts may
reference other scripts so very large reports are easily
created by aggregating references to existing scripts.
Performance, while not breathtaking, is adequate. Most
setup reports take several seconds to render to a web
page, and some of the very large aggregations, which
draw on data sources beyond just the experiment XML,
can take 20 or more seconds to complete.

With the codebase for ShotSetupReports having
reached a relatively stable maturity, the single aspect that
continues to change is in fact the “data” that drives the
system – report scripts. The lifecycle maintenance costs
for ShotSetupReports are miniscule. Corrections to
reports typically consist of updating an xpath used to pull
a field from the experiment XML – an operation that
usually takes less than five minutes, can be performed
without any system down time, and is available
immediately to all users as soon as the updated script is
committed to the database. With thousands of setup
parameters stored in an XML schema that evolves
continually in small increments, and exposed by dozens
of setup reports, occasional incorrect references are
inevitable. For our project to be able to deploy
corrections very quickly, usually within minutes of
receiving an indication of an error, is a tremendous win
both for our software development project due to the
minimal resources involved and for our users, whose
workflow endures only a brief interruption.

APPROVAL MANAGER
In the experiment lifecycle, Approval Manager drives

operational workflow subsequent to experiment setup,
facilitating review and approval and finally invoking
export of the experiment to the NIF laser control system,
ICCS, at which point the experiment lifecycle has moved
beyond the campaign management phase and into the

Proceedings of ICALEPCS2013, San Francisco, CA, USA FRCOAAB04

Experiment Control

ISBN 978-3-95450-139-7

1475 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

final phase culminating in the laser shot. The transition
from setup to review and approval is not a single event
but occurs incrementally as each data group is completed
in CMT and submitted for review. Depending on the
outcome of the review, a data group may be sent back to
CMT for re-work and re-submittal.

Since AppMan’s introduction in early 2011, the
approval cycle it manages has been revised, expanded,
and diversified to accommodate the NIF community’s
increasingly refined approval workflow requirements.
Capabilities conceived of and implemented since the
initial AppMan introduction include:

 Multi-stage approval workflows with optional or
mandatory intermediate approval stages;

 “Virtual” data groups keyed dynamically by
prescribed logical conditions in the experiment setup
that support both more abstract and more specialized
review needs than those dictated directly by data
group submittal from CMT;

 Workflow “contingencies” created dynamically by
prescribed workflow events that act as a barrier to
workflow progress until their driving conditions are
resolved;

 Configurable dependencies between data groups so
that setup changes in a previously approved data
group can force re-review of other, dependent data
groups;

 Automated exports of target system data
immediately upon approval to enable production of
layered cryogenic targets days in advance of the
planned shot time

 Configurable message broadcast for one-way
communication to logged-in users

 A rich array of admin-level features to facilitate
testing, debugging, and approval workflow analysis

AppMan has been designed from the outset to be data-
driven and keep important metadata and configuration
settings interactively accessible. However, there are some
important changes implemented to make AppMan more
data-driven whose need was only revealed by experience.
For instance, the addition of new diagnostics in CMT
impose one set of change requirements on AppMan, but
revisions to existing diagnostics may require only a subset
of those changes, or no changes at all in AppMan. Being
able to characterize these patterns well enough to define a
unified collection of metadata that will support either sort
of change and obviate code changes demanding the
expense of a new release required the experience of many
change cycles on top of the maturation of our approval
workflows.

Most of the above features are realized in key ways via
metadata definitions, and virtually all of AppMan’s
metadata and configuration settings can be accessed
interactively through an admin interface. Beyond the
imperative to free the project as much as possible from
code deployments by designing logic to be driven by
easily modified data, the project also benefits, sometimes
dramatically, when the unexpected occurs and interrupts
operational workflow. Whether it be a bug in the code or

an unexpected external condition that breaks logic, the
ability to undo the effects of broken logic by manipulating
system data (after thorough analysis of the problem and
impacts of the proposed solution!) is extremely powerful
and can save valuable time during when it is most critical.

TARGET DIAGNOSTIC TEMPLATE
MANAGER

TDTM provides yet another take on the notion of “data
driven.” TDTM provides setup templates for most target
diagnostics that can be configured in CMT. Users
populate the fields in the template (drawing on the same
setup option data in PLM that CMT uses) then save the
completed template under a unique name. The supported
diagnostics in CMT each have interfaces to let users load
templates into their diagnostic setups, completing an
entire diagnostic setup in one simple step. Furthermore,
the interface between CMT and TDTM also permits
saving a setup into TDTM as a new template for the
diagnostic.

TDTM presents some unique challenges owing to the
stringent validation requirements CMT applies to users’
setups. Since CMT’s validation logic is only available to
CMT, TDTM cannot apply all of the same error checking
and constraints internally to setups that CMT can,
opening the door for the occasional error to be propagated
into multiple experiments by a single template. The
preferred solution to this would be to expose CMT’s
validation code as a service that could then be called from
TDTM, but the low incidence of actual problems from the
current architecture does not justify the effort at this
point.

SUMMARY
Campaign Management encompasses a diverse array of

applications critical to the experiment lifecycle at the NIF.
We have adopted a practical policy of data-driven design,
both in the end user functional spaces and in application
internals. This approach minimizes our need to make
changes that require code work and deployments,
activities that are inherently more resource intensive and
costly than the database updates. Furthermore, when a
change is required, it can be affected quickly, minimizing
the duration of the interruption to operational workflow.

REFERENCES
[1] “The Apache Velocity Project,”

http://velocity.apache.org.

FRCOAAB04 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1476C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

