
THE LIMA PROJECT UPDATE

S. Petitdemange, L. Claustre, A. Homs#, E. Papillon, R. Homs-Regojo, ESRF, Grenoble, France.

Abstract
LIMA, a Library for Image Acquisition, was developed

at the ESRF to control high-performance 2D detectors
used in scientific applications. It provides generic access
to common image acquisition concepts, from detector
synchronization to online data reduction, including image
transformations and storage management. An abstraction
of the low-level 2D control defines the interface for
camera plugins, allowing different degrees of hardware
optimizations. Scientific 2D data throughput up to 250
MB/s is ensured by multi-threaded algorithms that exploit
multi-CPU/core technologies. Eighteen detectors are
currently supported by LIMA, covering CCD, CMOS and
pixel detectors, and video GigE cameras. Control system
agnostic by design, LIMA has become the de facto 2D
standard in the TANGO community. An active
collaboration among large facilities, research laboratories
and detector manufacturers joins efforts towards the
integration of new core features, detectors and data
processing algorithms. The LIMA 2 generation will
provide major improvements in several key core
elements, like buffer management, data format support
(including HDF5) and user-defined software operations,
among others.

INTRODUCTION
The ESRF beamline (BL) control system is composed

by a variety of devices installed over the optics and
experimental hutches. Most of these equipments are
controlled by dedicated PCs, and accessed through the
network using the TACO and TANGO middlewares [1].
The user scientist performs the experiment from the main
BL control workstation by means of SPEC, a versatile
hardware control application that communicates to the
distributed device servers. A significative number of 2D
detectors have been integrated in the past using generic
interfaces. A first generic layer is given by SPEC image
interface, which allowed the development of unified
macros. A second layer was a common CCD
TACO/TANGO server interface, so only one generic
SPEC controlled is needed. Finally, efforts were made to
reuse the device server code implementing the
configuration and control of the image acquisition
process. However, back-porting new features to existing
detectors was often unpractical.

The next step in the standardisation of 2D detector
control was the development of LIMA, a generic Library
for IMage Acquisition [2,3]. It provides a common
functionality for various detectors, using hardware
acceleration capabilities when available.

THE LIMA LIBRARY

Goals
The LIMA library design was driven by four main

goals. First, to be control system-independent, so it can be
used by different laboratories. A second goal was to
address high speed detectors, so it i) exploits the hardware
optimisations to their maximum extent; ii) makes
intensive use of multi-threaded algorithms; and iii)
minimises unnecessary memory copies. Another
requirement for the library was to provide the same high
level interface for all detectors, both from the
configuration and frame processing point of views. This
implies the activation of a software implementation when
the corresponding functionality is not available in the
hardware, like pixel binning or the selection of a sub-
image/region-of-interest (RoI). The last goal was to
design the library in a modular way, so extensions can be
easily added in the future, both in the low hardware level
and the application interface level.

 Library Structure
LIMA separates the image generation from its software

processing by defining two levels: the hardware layer and
the control layer, respectively. The hardware layer is
responsible for exporting the detector capabilities and for
controlling them accordingly. On top of it and below the
application layer, the control layer must configure the
acquisition parameters through the hardware layer.
Depending on the missing hardware optimisations, the
control layer must also activate the fallback software
algorithms if their functionality was requested by the user.
Finally, any pure-software frame processing, like data
reduction algorithms, is managed by the control layer.

The hardware layer implementation, called “camera
plugin”, must provide a well-defined hardware interface,
an abstraction of the low-level 2D detector control. It
normally calls the Software Development Kit (SDK) API.
In addition to the basic start/stop/status functions, the
hardware interface contains a list control objects
associated to the available hardware capabilities. Three
capabilities are mandatory: detector information,
synchronisation with external devices and buffer
management. The remaining capabilities are considered
as optimisations and are optional. Some of them affect the
image geometry, such as pixel binning, RoI and the
horizontal/vertical flip (mirror). Others are completely
unrelated, like shutter control and “native saving”, which
allows the SDK to automatically save the raw data if no
additional image processing is needed. The modular
structure of the hardware interface has simplified the
integration of new low-level functionality. For instance,
the interface for video cameras and the native saving were
added to LIMA without affecting the existing detectors.

#alejandro.homs@esrf.fr

Proceedings of ICALEPCS2013, San Francisco, CA, USA FRCOAAB08

Experiment Control

ISBN 978-3-95450-139-7

1489 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

The control layer is the generic detector interface
towards the application. It also follows a modular design
with blocks that control the different configuration areas:
image, saving, buffer management, video, among others.
Depending on the configured parameters and the detector
capabilities, some software processing tasks are activated;
these are known as “internal software operations”.
Additionally, “external software operations” can be added
to the frame processing chain, either provided by the
LIMA task repository or completely user-defined. Once
the parameters are set by the user and the acquisition
starts, it will independently progress without the need of
intervention by the application layer. The user can either
poll on the acquisition status or request to be informed of
its evolution, in a complete passive role.

Almost every detector exports specific configuration
parameters with limited or null relevance to the other
detectors. Typical examples are sensor readout modes,
ADC gains, DAC thresholds, among many others. The
control layer is not aware of such particularities in order
to avoid a complicated interface to generic parameters. It
is the camera plugin role to export all the detector-specific
configuration parameters and procedures to the
application layer.

LIMA is written in C++, and a Python wrapping with
SIP is provided for most of the classes. Camera plugins as
well as user-defined frame processing tasks can be written
either in C++ or in Python. The library is available on
several GNU/Linux distributions: RedHat EL 5,
openSUSE 11 and Debian 6, both 32-bit and 64-bit
architectures. LIMA runs on Windows XP and 7 32-bit as
well; a porting to Windows 7 64-bit has been recently
developed and is under test.

Available Features
Several common concepts have been identified in the

abstraction of the 2D detector data processing. The first
one to be applied is the frame reconstruction, necessary
when the detector readout sequence does not follow the
real sensor geometry. Typical cases are detectors with
parallel readout of different areas, like CCDs with
multiple ADCs or multi-chips modules (ESRF Maxipix).
If the SDK supplies such kind of “geometrically
incorrect” raw data, LIMA can systematically call a
detector-specific reconstruction function. Some detectors
have a limited integration capacity, either in time or in
dose. For these cases, the accumulation mode divides the
requested exposure into shorter intervals and
transparently integrates them into a single frame.

Basic geometric transformations can be performed on
each frame: image rotation, horizontal/vertical flip, pixel
binning and RoI extraction. Except rotation, these
operations might be partially or completely performed by
the detector; LIMA complements the remaining
transformations by software to fulfil the user request.
Figure 1 shows the evolution of an image through
different hardware and software transformations.

Once the image has the appropriate shape, pre-
processing algorithms are executed: background
subtraction, flat-field correction and pixel masking. At
this stage the image is considered ready for saving and/or
for further data reduction processing. The 2D data can be
saved manually (on user request) or automatically (on
each “image ready” event). User-defined metadata is
composed in LIMA by two different parts: common and
per-frame. The common part is a fixed information block
used for all the frames in an acquisition, like the sample
name or scan conditions. In addition to that, specific per-
frame parameters can be supplied, such as the
instantaneous beam intensity or sample temperature. If
per-frame metadata is used, the image is not saved until
the corresponding information is received from the
application level. Currently supported formats are EDF
(ESRF Data Format), CBF (Crystallographic Binary
Files) and Nexus/HDF5 (through the Common Data
Model developed by SOLEIL and ANSTO). Data
compression is used in CBF files, and is optional in EDF
files using gzip.

Additional data reduction tasks are available for the
LIMA frame processing chain: statistic calculations on
pixel intensity (known as RoI-counters), centroid
determination for Beam Position Monitoring (BPM), and
image projection (binning) on one dimension (RoI-to-
spectrum). Azimuthal regrouping and integration has
been recently added to LIMA through pyFAI [4], useful
for X-ray scattering and diffraction techniques. It provides
either 1D (azimuthal integration) or 2D (polar
transformation) data reduction, taking into account not
only the experiment setup geometry, but also possible
spatial distortions in the detector (by optical fiber tapers).
Finally, LIMA offers the possibility to insert a user-
defined task in the frame processing chain. This external
software operation will be called at every frame and can
generate either a new image to be supplied to another
operation (link task) or another kind of data that LIMA is
not aware of (sink task).

Figure 1: Example of an image transformation sequence.

FRCOAAB08 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1490C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

Frame Dynamics
In order to exploit the modern multi-CPU, multi-core

platforms, the LIMA software processing is based on an
auxiliary framework developed for parallel task
execution: ProcessLib. When a new “hardware frame
ready” event is generated by the camera plugin, a chain of
tasks is built and scheduled for execution. As their name
suggests, link tasks, like image rotation and background
subtraction, must be executed sequentially. However,
tasks reading the same frame can be parallelised; this is
typically the case of data reduction sink tasks such as file
saving and RoI counters. In most of the cases the
processing of a frame is independent of the following one,
so LIMA also parallelises task chains associated to
different frames. A particular task requiring a sequential
handling of frames, like file saving, can force the
serialisation internally. A pool of working threads is used
to execute tasks as they are scheduled in order to not
overload the operating system.

Callbacks are used in LIMA for asynchronous
notifications, including task completion events. Each time
an event marks a relevant stage in the frame processing, a
dedicated frame counter in the acquisition status is
incremented so the user can follow its progress. For
instance, the “hardware frame ready” and “frame saved”
events increment the “last image acquired” and “last
image saved”, respectively. An example of a frame
processing chain and its associated events is shown in
Figure 2.

Figure 2: Frame processing chain and events.

CURRENT STATUS

Supported Detectors
The following detectors are interfaced to LIMA:
 ESRF Frelon and Maxipix (single chip, 2x2, 5x1)
 Dectris Pilatus and Mythen
 Basler, Prosilica, Point Grey and IDS uEye GigE

cameras

 ADSC, MarCCD and RayonixHS detectors
 Andor I-Kon
 XPAD pixel detector
 Roper Scientific cameras through PVCAM
 PCO Dimax and Edge cameras
 Perkin Elmer flat panel detector
 PhotonicsScience
 DSG/STFC Xh 1D Ge detector

Scientific Applications
LIMA has been in production level for about 3 years in

more than 20 BLs at the ESRF. The main application is a
TANGO server that exports different devices with
interfaces to LIMA core functionality, detector-specific
parameters and data-reduction tasks. On top of that, a
BeamViewer HTTP server can be started, which is very
useful as display for BPM applications.

Many X-ray techniques exploit LIMA capabilities. Fast
imaging experiments notably use 2D detectors, like
radiography, tomography and ptychography. Area
detectors are also key elements in diffraction and
scattering techniques, from CDI to XPCS and GISAXS,
including macromolecular crystallography. Time resolved
XAS and powder diffraction experiments use as well
LIMA as primary detector control. Video cameras are
used for both sample visualization and BPM applications.

In terms of performance, LIMA allows data acquisition
at the maximum rate supported by the detectors in the
framework of the above-mentioned applications. For
instance, data rates of 250 MB/s are achieved on the
PCO.Dimax CMOS camera with local disk saving. The
multi-threaded approach of its frame processing chain
allows LIMA to follow the detector data rate, again to the
extent of the current applications. As an example,
azimuthal integration with pyFAI is performed on every
frame acquired with a Frelon HD camera in Frame-
Transfer-Mode (half-CCD) at full speed (30 fps, 120
MB/s), controlled by a dual six-core PC.

LIMA Collaboration
Shortly after LIMA entered into the production phase, a

spontaneous collaboration among different European
synchrotron facilities and national laboratories was born.
SOLEIL, PETRA III/DESSY, ALBA, MAX-LAB, FRM-
II/TUM and ILE/LULI/Ecole Polytechnique have either
contributed with camera plugins, installations scripts and
bug fixes, or installed LIMA for operation/test and helped
in the debugging on different scenarios. In the same
direction, camera manufacturers like ADSC, Rayonix and
DSG/STFC have developed LIMA hardware plugins for
their detectors, notably simplifying their integration in the
instrumentation community.

This active collaboration motivated the organization of
a LIMA Workshop, which took place in March 2013 at
the ESRF. A review the application of LIMA at the
different institutes as well as their requests represented a
starting point for fruitful discussions on the future
developments of the project.

Proceedings of ICALEPCS2013, San Francisco, CA, USA FRCOAAB08

Experiment Control

ISBN 978-3-95450-139-7

1491 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Code Repository
The LIMA source code is available under the Gnu

Public License at Git-Hub global repository manager [5].
The official project documentation can be found at [3].

TOWARDS LIMA 2.0
In addition to the needs for integration of new

detectors, several limitations were identified by the ESRF
and the collaborators during the LIMA Workshop. A
global restructuration of the image buffer management
was agreed to better fit the current and future
applications. One of the goals of the new interface is to
allow the start of a new acquisition while the previous one
is still processing acquired frames, with the aim of
reducing the gap between scans. Extensions also foresee
the support of detector-generated metadata, as well as
more flexible, multi-client callback interface. A major
redesign of the saving interface would also be desirable
for a flexible integration of more generic schemas of the
HDF5 data format. The diversity of the experimental
techniques that exploit LIMA seems to require such
extended flexibility. Finally, new data reduction
algorithms would be appreciated by the scientific
community to further improve the online data analysis. In
particular, a formal framework for sinogram generation is
very useful in tomography experiments, as well as the
implementation of RoI counters in polar coordinates
(simplified azimuthal integration). The integration of the
latter data reduction tasks in LIMA is already in progress.

CONCLUSIONS
The LIMA library has consolidated its role as generic

framework for 2D detector control not only at the ESRF
but also at several large facilities and national
laboratories. The supported detectors and implemented
features simplify its integration into experimental control
system, especially if they are based on (or able to connect
to) the TANGO middleware. High speed acquisitions at
the maximum rate required by the experiments are
performed with LIMA, including diverse data reduction
algorithms. The LIMA community actively collaborates
in the development of new plugins and software tasks,
and important improvements in the core are envisaged in
the near future to better fit scientific and instrumentation
needs.

ACKNOWLEDGEMENTS
As expressed above, important contributions in

hardware plug-ins, saving interfaces, installation scripts
and TANGO extensions have been made by collaborators,
in particular at SOLEIL, PETRA III/DESY, FRM-
II/TUM, MAX-LAB, ALBA, ADSC, Rayonix and
DSG/STFC. Nexeya Systems has worked in the
improvement of the project documentation. Finally,
Matias Guijarro and Jerome Kieffer from the ESRF ISDD
software group have developed the BeamViewer web
server interface and pyFAI, respectively, and Alessandro
Mirone has contributed with useful discussions.

REFERENCES
[1] A. Homs-Purón, D. Beltrán, A. Beteva, M. C.

Domínguez, P. Fajardo, A. Götz, J. Klora, E.
Papillon, M. Pérez, V. Rey: “LINUX/PCI: The ESRF
beamline control system modernisation”,
Proceedings of ICALEPCS2003, MP565, Gyeongju,
Korea.

[2] A. Homs, L. Claustre, A. Kirov, E. Papillon, S.
Petitdemange: “LIMA: A generic library for high
throughput image acquisition”, Proceedings of
ICALEPCS2011, WEMAU011, Grenoble, France.

[3] http://lima.blissgarden.org
[4] J. Kieffer, D. Karkoulis, “PyFAI, a versatile library

for azimuthal regrouping”, Journal of Physics:
Conference Series 425 (2013) 202012.

[5] git://github.com/esrf-bliss/Lima.git

FRCOAAB08 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1492C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

