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Abstract 
LIMA, a Library for Image Acquisition, was developed 

at the ESRF to control high-performance 2D detectors 
used in scientific applications. It provides generic access 
to common image acquisition concepts, from detector 
synchronization to online data reduction, including image 
transformations and storage management. An abstraction 
of the low-level 2D control defines the interface for 
camera plugins, allowing different degrees of hardware 
optimizations. Scientific 2D data throughput up to 250 
MB/s is ensured by multi-threaded algorithms that exploit 
multi-CPU/core technologies. Eighteen detectors are 
currently supported by LIMA, covering CCD, CMOS and 
pixel detectors, and video GigE cameras. Control system 
agnostic by design, LIMA has become the de facto 2D 
standard in the TANGO community. An active 
collaboration among large facilities, research laboratories 
and detector manufacturers joins efforts towards the 
integration of new core features, detectors and data 
processing algorithms. The LIMA 2 generation will 
provide major improvements in several key core 
elements, like buffer management, data format support 
(including HDF5) and user-defined software operations, 
among others. 

INTRODUCTION 
The ESRF beamline (BL) control system is composed 

by a variety of devices installed over the optics and 
experimental hutches. Most of these equipments are 
controlled by dedicated PCs, and accessed through the 
network using the TACO and TANGO middlewares [1]. 
The user scientist performs the experiment from the main 
BL control workstation by means of SPEC, a versatile 
hardware control application that communicates to the 
distributed device servers. A significative number of 2D 
detectors have been integrated in the past using generic 
interfaces. A first generic layer is given by SPEC image 
interface, which allowed the development of unified 
macros. A second layer was a common CCD 
TACO/TANGO server interface, so only one generic 
SPEC controlled is needed. Finally, efforts were made to 
reuse the device server code implementing the 
configuration and control of the image acquisition 
process. However, back-porting new features to existing 
detectors was often unpractical. 

The next step in the standardisation of 2D detector 
control was the development of LIMA, a generic Library 
for IMage Acquisition [2,3]. It provides a common 
functionality for various detectors, using hardware 
acceleration capabilities when available. 

THE LIMA LIBRARY 

Goals 
The LIMA library design was driven by four main 

goals. First, to be control system-independent, so it can be 
used by different laboratories. A second goal was to 
address high speed detectors, so it i) exploits the hardware 
optimisations to their maximum extent; ii) makes 
intensive use of multi-threaded algorithms; and iii) 
minimises unnecessary memory copies. Another 
requirement for the library was to provide the same high 
level interface for all detectors, both from the 
configuration and frame processing point of views. This 
implies the activation of a software implementation when 
the corresponding functionality is not available in the 
hardware, like pixel binning or the selection of a sub-
image/region-of-interest (RoI). The last goal was to 
design the library in a modular way, so extensions can be 
easily added in the future, both in the low hardware level 
and the application interface level. 

 Library Structure 
LIMA separates the image generation from its software 

processing by defining two levels: the hardware layer and 
the control layer, respectively. The hardware layer is 
responsible for exporting the detector capabilities and for 
controlling them accordingly. On top of it and below the 
application layer, the control layer must configure the 
acquisition parameters through the hardware layer. 
Depending on the missing hardware optimisations, the 
control layer must also activate the fallback software 
algorithms if their functionality was requested by the user. 
Finally, any pure-software frame processing, like data 
reduction algorithms, is managed by the control layer.  

The hardware layer implementation, called “camera 
plugin”, must provide a well-defined hardware interface, 
an abstraction of the low-level 2D detector control. It 
normally calls the Software Development Kit (SDK) API. 
In addition to the basic start/stop/status functions, the 
hardware interface contains a list control objects 
associated to the available hardware capabilities. Three 
capabilities are mandatory: detector information, 
synchronisation with external devices and buffer 
management. The remaining capabilities are considered 
as optimisations and are optional. Some of them affect the 
image geometry, such as pixel binning, RoI and the 
horizontal/vertical flip (mirror). Others are completely 
unrelated, like shutter control and “native saving”, which 
allows the SDK to automatically save the raw data if no 
additional image processing is needed. The modular 
structure of the hardware interface has simplified the 
integration of new low-level functionality. For instance, 
the interface for video cameras and the native saving were 
added to LIMA without affecting the existing detectors. 
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The control layer is the generic detector interface 
towards the application. It also follows a modular design 
with blocks that control the different configuration areas: 
image, saving, buffer management, video, among others. 
Depending on the configured parameters and the detector 
capabilities, some software processing tasks are activated; 
these are known as “internal software operations”. 
Additionally, “external software operations” can be added 
to the frame processing chain, either provided by the 
LIMA task repository or completely user-defined. Once 
the parameters are set by the user and the acquisition 
starts, it will independently progress without the need of 
intervention by the application layer. The user can either 
poll on the acquisition status or request to be informed of 
its evolution, in a complete passive role. 

Almost every detector exports specific configuration 
parameters with limited or null relevance to the other 
detectors. Typical examples are sensor readout modes, 
ADC gains, DAC thresholds, among many others. The 
control layer is not aware of such particularities in order 
to avoid a complicated interface to generic parameters. It 
is the camera plugin role to export all the detector-specific 
configuration parameters and procedures to the 
application layer. 

LIMA is written in C++, and a Python wrapping with 
SIP is provided for most of the classes. Camera plugins as 
well as user-defined frame processing tasks can be written 
either in C++ or in Python. The library is available on 
several GNU/Linux distributions: RedHat EL 5, 
openSUSE 11 and Debian 6, both 32-bit and 64-bit 
architectures. LIMA runs on Windows XP and 7 32-bit as 
well; a porting to Windows 7 64-bit has been recently 
developed and is under test. 

Available Features 
Several common concepts have been identified in the 

abstraction of the 2D detector data processing. The first 
one to be applied is the frame reconstruction, necessary 
when the detector readout sequence does not follow the 
real sensor geometry. Typical cases are detectors with 
parallel readout of different areas, like CCDs with 
multiple ADCs or multi-chips modules (ESRF Maxipix). 
If the SDK supplies such kind of “geometrically 
incorrect” raw data, LIMA can systematically call a 
detector-specific reconstruction function. Some detectors 
have a limited integration capacity, either in time or in 
dose. For these cases, the accumulation mode divides the 
requested exposure into shorter intervals and 
transparently integrates them into a single frame. 

Basic geometric transformations can be performed on 
each frame: image rotation, horizontal/vertical flip, pixel 
binning and RoI extraction. Except rotation, these 
operations might be partially or completely performed by 
the detector; LIMA complements the remaining 
transformations by software to fulfil the user request. 
Figure 1 shows the evolution of an image through 
different hardware and software transformations. 

Once the image has the appropriate shape, pre-
processing algorithms are executed: background 
subtraction, flat-field correction and pixel masking. At 
this stage the image is considered ready for saving and/or 
for further data reduction processing. The 2D data can be 
saved manually (on user request) or automatically (on 
each “image ready” event). User-defined metadata is 
composed in LIMA by two different parts: common and 
per-frame. The common part is a fixed information block 
used for all the frames in an acquisition, like the sample 
name or scan conditions. In addition to that, specific per-
frame parameters can be supplied, such as the 
instantaneous beam intensity or sample temperature. If 
per-frame metadata is used, the image is not saved until 
the corresponding information is received from the 
application level. Currently supported formats are EDF 
(ESRF Data Format), CBF (Crystallographic Binary 
Files) and Nexus/HDF5 (through the Common Data 
Model developed by SOLEIL and ANSTO). Data 
compression is used in CBF files, and is optional in EDF 
files using gzip. 

Additional data reduction tasks are available for the 
LIMA frame processing chain: statistic calculations on 
pixel intensity (known as RoI-counters), centroid 
determination for Beam Position Monitoring (BPM), and 
image projection (binning) on one dimension (RoI-to-
spectrum).  Azimuthal regrouping and integration has 
been recently added to LIMA through pyFAI [4], useful 
for X-ray scattering and diffraction techniques. It provides 
either 1D (azimuthal integration) or 2D (polar 
transformation) data reduction, taking into account not 
only the experiment setup geometry, but also possible 
spatial distortions in the detector (by optical fiber tapers). 
Finally, LIMA offers the possibility to insert a user-
defined task in the frame processing chain. This external 
software operation will be called at every frame and can 
generate either a new image to be supplied to another 
operation (link task) or another kind of data that LIMA is 
not aware of (sink task). 

 

Figure 1: Example of an image transformation sequence. 
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Frame Dynamics 
In order to exploit the modern multi-CPU, multi-core 

platforms, the LIMA software processing is based on an 
auxiliary framework developed for parallel task 
execution: ProcessLib. When a new “hardware frame 
ready” event is generated by the camera plugin, a chain of 
tasks is built and scheduled for execution. As their name 
suggests, link tasks, like image rotation and background 
subtraction, must be executed sequentially. However, 
tasks reading the same frame can be parallelised; this is 
typically the case of data reduction sink tasks such as file 
saving and RoI counters. In most of the cases the 
processing of a frame is independent of the following one, 
so LIMA also parallelises task chains associated to 
different frames. A particular task requiring a sequential 
handling of frames, like file saving, can force the 
serialisation internally. A pool of working threads is used 
to execute tasks as they are scheduled in order to not 
overload the operating system. 

Callbacks are used in LIMA for asynchronous 
notifications, including task completion events. Each time 
an event marks a relevant stage in the frame processing, a 
dedicated frame counter in the acquisition status is 
incremented so the user can follow its progress. For 
instance, the “hardware frame ready” and “frame saved” 
events increment the “last image acquired” and “last 
image saved”, respectively. An example of a frame 
processing chain and its associated events is shown in 
Figure 2.  

Figure 2: Frame processing chain and events. 

CURRENT STATUS 

Supported Detectors 
The following detectors are interfaced to LIMA: 
 ESRF Frelon and Maxipix (single chip, 2x2, 5x1) 
 Dectris Pilatus and Mythen 
 Basler, Prosilica, Point Grey and IDS uEye GigE 

cameras 

 ADSC, MarCCD and RayonixHS detectors 
 Andor I-Kon 
 XPAD pixel detector 
 Roper Scientific cameras through PVCAM 
 PCO Dimax and Edge cameras 
 Perkin Elmer flat panel detector 
 PhotonicsScience 
 DSG/STFC Xh 1D Ge detector 

Scientific Applications 
LIMA has been in production level for about 3 years in 

more than 20 BLs at the ESRF. The main application is a 
TANGO server that exports different devices with 
interfaces to LIMA core functionality, detector-specific 
parameters and data-reduction tasks. On top of that, a 
BeamViewer HTTP server can be started, which is very 
useful as display for BPM applications. 

Many X-ray techniques exploit LIMA capabilities. Fast 
imaging experiments notably use 2D detectors, like 
radiography, tomography and ptychography. Area 
detectors are also key elements in diffraction and 
scattering techniques, from CDI to XPCS and GISAXS, 
including macromolecular crystallography. Time resolved 
XAS and powder diffraction experiments use as well 
LIMA as primary detector control. Video cameras are 
used for both sample visualization and BPM applications. 

In terms of performance, LIMA allows data acquisition 
at the maximum rate supported by the detectors in the 
framework of the above-mentioned applications. For 
instance, data rates of 250 MB/s are achieved on the 
PCO.Dimax CMOS camera with local disk saving. The 
multi-threaded approach of its frame processing chain 
allows LIMA to follow the detector data rate, again to the 
extent of the current applications. As an example, 
azimuthal integration with pyFAI is performed on every 
frame acquired with a Frelon HD camera in Frame-
Transfer-Mode (half-CCD) at full speed (30 fps, 120 
MB/s), controlled by a dual six-core PC. 

LIMA Collaboration 
Shortly after LIMA entered into the production phase, a 

spontaneous collaboration among different European 
synchrotron facilities and national laboratories was born. 
SOLEIL, PETRA III/DESSY, ALBA, MAX-LAB, FRM-
II/TUM and ILE/LULI/Ecole Polytechnique have either 
contributed with camera plugins, installations scripts and 
bug fixes, or installed LIMA for operation/test and helped 
in the debugging on different scenarios. In the same 
direction, camera manufacturers like ADSC, Rayonix and 
DSG/STFC have developed LIMA hardware plugins for 
their detectors, notably simplifying their integration in the 
instrumentation community. 

This active collaboration motivated the organization of 
a LIMA Workshop, which took place in March 2013 at 
the ESRF. A review the application of LIMA at the 
different institutes as well as their requests represented a 
starting point for fruitful discussions on the future 
developments of the project.  
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Code Repository 
The LIMA source code is available under the Gnu 

Public License at Git-Hub global repository manager [5]. 
The official project documentation can be found at [3]. 

TOWARDS LIMA 2.0 
In addition to the needs for integration of new 

detectors, several limitations were identified by the ESRF 
and the collaborators during the LIMA Workshop. A 
global restructuration of the image buffer management 
was agreed to better fit the current and future 
applications. One of the goals of the new interface is to 
allow the start of a new acquisition while the previous one 
is still processing acquired frames, with the aim of 
reducing the gap between scans. Extensions also foresee 
the support of detector-generated metadata, as well as 
more flexible, multi-client callback interface. A major 
redesign of the saving interface would also be desirable 
for a flexible integration of more generic schemas of the 
HDF5 data format. The diversity of the experimental 
techniques that exploit LIMA seems to require such 
extended flexibility. Finally, new data reduction 
algorithms would be appreciated by the scientific 
community to further improve the online data analysis. In 
particular, a formal framework for sinogram generation is 
very useful in tomography experiments, as well as the 
implementation of RoI counters in polar coordinates 
(simplified azimuthal integration). The integration of the 
latter data reduction tasks in LIMA is already in progress. 

CONCLUSIONS 
The LIMA library has consolidated its role as generic 

framework for 2D detector control not only at the ESRF 
but also at several large facilities and national 
laboratories. The supported detectors and implemented 
features simplify its integration into experimental control 
system, especially if they are based on (or able to connect 
to) the TANGO middleware. High speed acquisitions at 
the maximum rate required by the experiments are 
performed with LIMA, including diverse data reduction 
algorithms. The LIMA community actively collaborates 
in the development of new plugins and software tasks, 
and important improvements in the core are envisaged in 
the near future to better fit scientific and instrumentation 
needs. 
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