
HOW TO SUCCESSFULLY RENOVATE A CONTROLS SYSTEM? -
LESSONS LEARNED FROM THE RENOVATION OF THE CERN

INJECTORS’ CONTROLS SOFTWARE
Grzegorz Kruk, Stephane Deghaye, Olga Kulikova, Valery Lezhebokov, Marine Pace, Pablo Pera

Mira, Eric Roux, Jakub Pawel Wozniak, CERN, Geneva, Switzerland

Abstract

Renovation of the control system of the CERN LHC
injectors was initiated in 2007 in the scope of the Injector
Controls Architecture (InCA) project. One of its main
objectives was to homogenize the controls software
across CERN accelerators and reuse as much as possible
the existing modern sub-systems, such as the settings
management used for the LHC. The project team created
a platform that would permit coexistence and
intercommunication between old and new components via
a dedicated gateway, allowing a progressive replacement
of the former. Dealing with a heterogeneous environment,
with many diverse and interconnected modules,
implemented using different technologies and
programming languages, the team had to introduce all the
modifications in the smoothest possible way, without
causing machine downtime. After a brief description of
the system architecture, the paper discusses the technical
and non-technical sides of the renovation process such as
validation and deployment methodology, operational
applications and configuration tools characteristics and
finally users’ involvement and human aspects, outlining
good decisions, pitfalls and lessons learned over the last
five years.

INTRODUCTION
During the 80s and the 90s the high-level controls

system used in the CERN Proton Synchrotron (PS)
complex was based on a 2-tier architecture. Most of the
Graphical User Interfaces (GUIs) were implemented in
the C/C++ programming language using the X/Motif
widget toolkit. The processes running on the front-end
computers (FECs) were based on a framework called GM
and communicated with higher layers via a custom RPC
protocol, both developed in-house.

While being relatively simple, this solution had many
drawbacks and limitations, for example lack of a
subscriptions mechanism, making it necessary to pull data
from the FECs, weak protection of the latter from the
increasing number of clients and a very basic settings
management.

Toward the end of the 90s, X/Motif was on the way to
become obsolete and finding developers skilled in this
technology was increasingly difficult. Work started on a
new Controls Middleware (CMW) [1] library and on a
new front-end framework called the Font-End Software
Architecture (FESA) [2]. At the same time the decision
was taken to implement the new high-level controls
system using object-oriented methodology and the Java

programming language. Work began to port the existing
X/Motif applications to Java, replacing the legacy
protocol with CMW in the hardware access layer.
However, with most of the efforts focused on the LHC,
no major architectural modifications were made, leaving
the system with the long-standing issues described
previously.

With growing maintenance costs and difficulties in
introducing new functionality, in autumn 2007 a new
project called Injectors Controls Architecture (InCA) [3]
was mandated to homogenize the controls software across
CERN accelerators.

INJECTOR CONTROLS ARCHITECTURE
InCA is a platform integrating specific applications

developed for the LHC injector accelerators with modules
implemented for the LHC, as well as new components
required to fulfil the specific operational needs of the PS
complex.

Architecture
InCA is based on a classical 3-tier architecture (Figure

1). At the bottom, there are the FECs, dedicated to the
real-time control of the hardware, managed by three
different frameworks: FESA, Function Generation
Controller (FGC) [4], controlling the power converters
and the legacy GM framework, being progressively
replaced by FESA.

Figure 1: Main components of the Injectors Controls
Architecture (InCA).

In the middle tier there are components providing high-
level services. Among them the LHC Software
Architecture (LSA) [5], responsible for the settings
management, the Acquisition Core (AcqCore) responsible
for the monitoring, processing and redistribution of

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOCOBAB05

Integrating Complex or Diverse Systems

ISBN 978-3-95450-139-7

43 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

hardware values and the Configuration Service that
provides efficient retrieval of configuration data.

Finally, in the top tier, there are client applications
accessing the middle-tier services, consisting of generic
applications provided by the InCA team that allow control
and surveillance of all the equipment in a standard way,
and many specific applications, developed by the
operations crew, dedicated to a concrete type of
equipment or operational scenario.

The overall architecture choice was correct but
comprehensive performance tests showed the low-level
libraries could not cope with the load that the AcqCore
exerted while monitoring and republishing all hardware
parameter values. Therefore we implemented
subscriptions on demand – a mechanism that creates new
subscriptions from InCA server to the FECs when
requested for the first time and stops them when the last
interested client application had been closed for a
predefined amount of time.

Dealing with Legacy Applications
By the time of the first operational deployment of InCA

in the PS machine in 2010, all the generic applications
had been implemented in Java and integrated with InCA.
There was however an important number of specific
applications used operationally still implemented in
X/Motif. As the migration of these applications to Java
was not feasible in time for the operational deployment of
InCA, two dedicated gateways were provided to allow
integration between these applications and the InCA
server, as seen in Figure 1.

Instead of directly sending new settings to the FECs,
the RPC calls from these applications are redirected to a
dedicated process (implemented in C++), which
subsequently forwards the calls to a Java process using
the XML-RPC protocol. The Java gateway calls the InCA
server as any other Java client.

This solution has proven to be reliable. However due to
the three additional hoops (two gateways and the InCA
server), the interaction with the FECs became an order of
magnitude slower, with possible delays up to a few
seconds. Despite these delays, we decided to not invest
additional time on optimizations due to the tight deadlines
to complete crucial features before the first operational
deployment. A positive side effect is the incentive it has
given the operations crew to rapidly renovate these
applications in Java.

DEVELOPMENT PROCESS
To properly manage such a large project we needed a

structured methodology. First we studied the Rational
Unified Process (RUP) but we concluded that it was too
heavy for our needs. We looked then into agile
methodologies and settled on Scrum [6], which gave
structure to the development process while being
lightweight.

Each four-week development cycle, shown in Figure 2,
ended by a demo meeting where the new features were

presented in front of all developers and representatives of
the operations crew.

Figure 2: InCA development cycle.

Although this methodology has many positive
elements, with time we realized that it was not ideal to
our environment.

What worked well for the InCA team were the planning
meetings, organized at the beginning of each iteration,
allowing all the developers to have an overview of the
features that would be worked on next. The iteration
meetings, held twice a week, improved knowledge
sharing, allowing close follow-up of the progress and a
more efficient resolution of many issues arising during
development. Also the demo meeting, being a small
milestone, played a meaningful role in motivating the
team to complete the planned work on time.

On the other hand, for the Scrum methodology to work
well, all members of the team need to be relatively easily
interchangeable i.e. all developers know and can work on
all parts of the project. Due to different levels of
knowledge about existing components and different areas
of expertise among the InCA developers, several Scrum
principles could not be applied properly. For example it
was difficult to fully engage participants during the
planning and demo meeting, when items outside of their
core responsibilities were discussed. In addition, support
issues and activities related to other projects that some of
the developers were involved in, heavily interfered with
planned tasks. This required the developer to often switch
context and meant a change of priorities for features
foreseen for the iteration.

After the first deployment of InCA in the PS machine,
we started to adjust the development process into a form
of Scrum-ban [7], i.e. a mixture of the Scrum and Kanban
[8] methodologies. This is more suitable for maintenance
projects with frequent and unexpected user requests and
support issues.

DEPLOYMENT METHODOLOGY
To prepare for the first operational deployment in the

PS, every 3-4 months, we organized dedicated Machine
Development (MD) sessions. During these one-day
sessions, InCA was deployed in a full scale on the

MOCOBAB05 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

44C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Integrating Complex or Diverse Systems

operational accelerator. The goal of these sessions was to
validate a set of features in the operational environment.

The tests were carried out by both the operations crew,
performing functional tests according to prepared
scenarios, and the InCA team, doing detailed checks of
generic applications and executing non-functional tests
such as verifying the performance and scalability of the
system. All the problems spotted during these sessions
were noted down and fixed before the next MD day.

The MD sessions played a key role in validating the
overall system. They also allowed the operations crew to
gain confidence in the new system before the operational
deployment. But even though they were carefully
planned, due to their limited duration it was difficult to
test all possible use cases, considering different types of
beams and diverse groups of users. In addition we
focused on operational tools and scenarios, giving less
attention to specialist applications such as those used by
the Radio Frequency (RF) experts. As a consequence we
experienced some problems within the first weeks after
the operational deployment that could have been avoided.
These problems were fortunately not critical and could be
quickly resolved.

Before the final deployment we also organized several
training sessions to familiarize the users with the new
system and to train them with the new set of tools.

We have applied the same strategy for all subsequent
InCA deployments on the other accelerators, adjusting the
procedure according to the feedback from the previous
sessions.

InCA Mode
Even with several testing sessions in the operational

environment, due to the importance of the system, we had
to be prepared for unforeseen critical problems that could
block operation for a significant period of time. To
mitigate such risks, we designed and implemented the
InCA client libraries in a way which allowed to quickly
disable the use of the InCA services and to switch back to
a non-InCA mode in which the applications worked as
they did before the operational deployment of InCA.

To bypass the InCA server, it was sufficient to modify
a dedicated JVM property or an environment variable and
restart the Java or X/Motif application. In addition, using
a single configuration file kept in a network location, we
were able to toggle the InCA mode globally for all
applications.

The global switch has never been used, however the
local ones turned out to be very useful for diagnostics as
they allowed comparing behaviour with and without the
InCA server involvement.

OPERATIONAL SUPPORT
InCA is a critical system used 24/7 to control most of

the accelerator’s equipment. More serious problems could
stop operation and delivery of the beam to various
experiments and to the LHC. Therefore it was essential to
put in place a reactive support. This was especially
important within the first months after the operational

deployment. We decided to involve all InCA developers
in the support to avoid the same people to be called in
systematically. The support was organized in weekly
shifts.

Each week, one member of the team is responsible for
the diagnostics and resolution of all problems, playing the
role of a front person. In case he is not able to diagnose or
solve the problem by himself, he redirects the issue to the
appropriate developer and ensures a proper follow up. At
the end of each week, a support meeting takes place with
all the developers and some of the user representatives,
where the last 7 days’ issues are discussed and explained
to the whole team.

Thanks to this organization, most of the issues are
handled directly by the support person, offloading time
from the other developers and minimizing the number of
interruptions they would be exposed to otherwise. The
support meeting improves the knowledge sharing and
decreases the diagnostic time in case of similar issues
appearing in the future.

One area where we could have improved is the training
of the participating developers. A more thorough training
would have given everyone a more detailed knowledge of
the components and layers of the system, especially those
they were not directly involved with. Without this,
sometimes the support person could not even perform the
initial diagnostics without the involvement of the
responsible developer.

GRAPHICAL USER INTERFACES
The greatest control system, providing rich

functionality and being fast and reliable, will not be
successful without good GUIs.

Users perceive the quality of the overall system through
the graphical tools that they use in their daily work. These
tools must not only be free of bugs, but also intuitive and
easy to use for the occasional and advanced users. If this
is not the case, instead of being helpful they might
become a source of frustration or even a cause of
operational errors.

Proliferation of Applications
One significant source of issues was the number of

different applications used to perform settings-related
operations e.g. to initialize, change, copy or rollback
settings. Historically different developers implemented
them at different moments in time, having SPS and LHC
requirements in mind and not covering the LHC injectors’
needs. Other tools existed in the PS complex in the pre-
InCA times and were only slightly adapted to use InCA
for settings management. Because of this situation, the
operations crew was sometimes confused about which
application should be used to perform a given task.

When this problem became apparent, work started on a
single and coherent settings management tool, covering
the requirements of the operations crew of all the
concerned accelerators. Successive versions of this tool
were deployed into production in 2011 and 2012,
replacing progressively the existing applications.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOCOBAB05

Integrating Complex or Diverse Systems

ISBN 978-3-95450-139-7

45 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Functionality of the remaining applications will be
included in a new version planned for early 2014.

Complexity and Ergonomics
Another source of trouble was the complexity of the

tools. Some of them, such as the generic Function Editor,
provide very rich functionality, starting from basic
operations to sophisticated, expert-oriented options.
Developing such tools, with requirements coming from
different accelerators and users, turned out to be much
more challenging than we initially assumed. The main
difficulty was not the implementation but the visual
design, the flow between various views and the way
different options were presented. With the initial version
of the Function Editor, many users felt lost in the number
of options, not knowing how to perform the simplest
operations. Even though we provided a comprehensive
help documentation available directly in the application,
most of the users preferred a more intuitive GUI with
small contextual help tips.

We realized when reviewing this tool, and also when
designing other applications, that we needed to stay in
close contact with the users. To show the users how each
aspect would look like and getting feedback from them
before starting the real implementation, we used Balsamiq
Mockups [9], a rapid wire-framing tool that allows easy
creation of graphical sketches reflecting the GUI to be
implemented.

The usage of this tool facilitated discussions with users
and speeded up iterations until a satisfactory design of the
GUI was found.

Configuration Tools
Many operational aspects of the existing control system

required proper configuration in the database. It was
agreed that the operations crew would take this
responsibility over. With InCA, many new features were
introduced, requiring additional configuration, making
this task more complex. With the main priority put on
providing the necessary functionality in the operational
applications, the importance of appropriate configuration
tools was neglected. The existing tools were not adequate
and contained a mixture of basic and advanced options.
As they started to be used regularly by the operations
crew, the number of wrong configurations started to
increase, contributing to about 30% of all reported issues.

To resolve this problem we decided to completely
review the configuration tools. The goal was to bring the
number of existing options to a minimum, by automating
configuration tasks or using reasonable default values,
and to make a clear distinction between the available
(visible) options to regular users and to experts.

The redesign has been completed in 2013 and new
configuration tools will be available to the operations
crew after the Long Shutdown in 2014.

HUMAN ASPECTS
An important aspect of the renovation process was the

acceptance of the system by the users’ community. The

first operational deployment of InCA confronted
substantial resistance from the operations crew, for
several reasons.

One reason was the fact that homogenization meant
moving from tools tailored to the needs of the individual
accelerators towards more generic applications. In
addition, InCA introduced several new concepts
compared to what already existed and changed slightly
the way the existing functionality could be used. The
result of these changes was that the operations crew had
to get accustomed to a new set of tools and to certain
extend also had to change their habits.

Other reasons were some missing functionality, still
under development, and teething problems in the new
tools, which lowered the trust in the system.

One of the key factors in rebuilding the confidence was
to maintain a close contact with all groups of users.
Reactive follow up of issues, a continuous presence in the
control room, listening and understanding individual
requirements and explaining any difficulties in
implementing them helped in increasing the bidirectional
understanding and facilitated the acceptance of the new
system by the users.

CONCLUSIONS
We successfully renovated the control system,

homogenizing it across the whole CERN accelerators
complex while respecting the specificities of individual
accelerators and user groups.

Facing a mixed reception of InCA by the users after the
first deployment, we significantly improved all the
aspects of the system during the last three years,
progressively gaining their trust. Many more
improvements are being developed now to be ready for
restart of all accelerators in 2014.

Since the PS deployment in 2010, InCA has been
deployed in the Booster and Linac2 in 2011, in SPS and
ISOLDE in 2012 and preparation is well on track for the
deployment in 2014 on the two remaining machines: AD
and CTF3.

REFERENCES
[1] K. Kostro et al., “The Controls Middleware (CMW) at

CERN”, ICALEPCS’03, Gyeongju, Korea
[2] M. Arruat et al., “Front-End Software Architecture”,

ICALEPCS’07, Knoxville, Tennessee, U.S.A.
[3] S. Deghaye et al., “CERN Proton Synchrotron Complex

High-Level Controls Renovation”, ICALEPCS’09, Kobe,
Japan

[4] Q. King et al., “Evolution of the CERN Power Converter
Function Generator/Controller for Operation in Fast Cycling
Accelerators”, ICALEPCS’11, Grenoble, France

[5] G. Kruk et al., “LHC Software Architecture (LSA) –
 Evolution Toward LHC Beam Commissioning”,

 ICALEPCS’07, Knoxville, Tennessee, U.S.A.
[6] en.wikipedia.org/wiki/Scrum_(development)
[7] en.wikipedia.org/wiki/Scrum_(development)#Scrum-ban
[8] en.wikipedia.org/wiki/Kanban_(development)
[9] http://balsamiq.com

MOCOBAB05 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

46C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Integrating Complex or Diverse Systems

