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Abstract 
Monitoring and control solutions for large one-off 

systems are typically built in silos using multiple tools 
and technologies. Functionality such as data processing 
logic, alarm handling, UIs, device drivers are 
implemented by manually writing configuration code in 
isolation and their cross dependencies maintained 
manually. The correctness of the created specification is 
checked using manually written test cases. Non-functional 
requirements – such as reliability, performance, 
availability, reusability and so on – are addressed in ad 
hoc manner. This hinders evolution of systems with long 
lifetimes. For ITER [1], we developed an integrated 
specifications environment and a set of tools to generate 
configurations for target execution platforms, along with 
required glue to realize the entire M&C solution. The 
SKA [2] is an opportunity to enhance this framework 
further to include checking for functional and engineering 
properties of the solution based on domain best practices. 
The framework includes three levels: domain-specific, 
problem-specific and target technology-specific. We 
discuss how this approach can address three major facets 
of complexity:  scale, diversity and evolution. 

INTRODUCTION 

The typical life cycle phases of any software 
development project starts with analysis such as stake 
holder needs, system requirements, architecture choices 
followed by detailed design of the target system, its 
implementation, verification and validation, integration 
and testing.  Execution of each of these life cycle phases 
is usually supported by a collection of tools and 
technologies which enable maintaining traceability across 
these phases.  Doors[3], SysML[4] are example which 
provide support during requirements analysis, architecture 
and design of software systems. Although in theory it is 
possible to use SysML all the way up to generating the 
final executable code from the high level design model, in 
practice it is seen that it is not very strong in its adaptation 
to building Monitoring and Control (M&C) solutions for 
real-time systems. This is due to various reasons such as 
difference in paradigm between modeling and 
implementation domain, lack of support for project or 
domain specific needs and above all it is a lot of work to 
model all aspects of M&C using a modeling tool then 
generate code from it. 

Our participation in the ITER project in the design and 
development of their M&C solution and later with SKA 
project for their M&C aspects helped us appreciate the 
need for building methodologies and tools that enhances 

the current state of the art to cater to the needs for 
building M&C solutions for projects like ITER and SKA. 
Our belief is that we can leverage from the existing tools 
and methodologies like SysML and our knowledge from 
the M&C and related domains, to create a complete 
specification model for M&C. This specification model 
can then be instantiated through a specification 
environment to build M&C solutions spanning across 
different physics domains. This paper presents the idea in 
the context of ITER and SKA.  The first section of the 
paper describes the current state of practice highlighting 
the methodologies and tools typically used in a software 
development projects. Second section describes the 
approach taken by ITER to improve upon the existing 
practice. Third section describes how the lessons learnt 
from ITER could be enhanced further so that it can be 
useful for other projects like SKA. 

STANDARD PRACTICE 
The current trend to architecting and designing both 

software and non-software including M&C systems is to 
use techniques from the system engineering methodology. 
The entire process can be understood from the figure 1. 
As per our experience, the identification of the design 
requirements, components along with their functionalities, 
engineering qualities, relationships and dependencies are 
ideally captured and analyzed in the first two steps in the 
life cycle.  For example, the analysis of stakeholder 
objectives and system requirements typically get captured 
as texts supported by tools that allow them to be managed 
for version control and so on. Then the requirements are 
analyzed and elicited further through modeling and meta 
modeling tools such as SysML. These tools allow 
modeling the architecture and design of the system.  
Translating the design into actual realization happens in 
the third and the fourth step. These step is typically a 
manual activity where the design created using the 
modeling tool is typically translated manually to either to 
SCADA specific input format which internally translate 
them to lower level executable or directly into C/C++ 
code. 

Challenges with Existing Practice  
We find the approach of model based development 

useful for building M&C solutions but not without 
caveats. Some of the challenges faced while using the 
standard approach along with the associated tools and 
technologies are mentioned below: 
 The notion of stakeholder objectives and values don’t 

get properly translated into the design and hence 
loose tractability.   
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Figure 1: Typical life cycle of the M&C realization process. 

 
 Capturing and analysis of the quality aspects in the 

design phase and making sure that they translate into 
the subsequently realization strategy is not very well 
supported in the system engineering modeling 
environment. 

 Although support for code generation for standard 
programming languages such as C++/Java from 
SysML model exists, there is lack support for more 
specific platforms such as EPICS [5]. Support for 
round tripping to pull manual changes in the 
generated source code back into the model becomes 
hard due to difference in paradigm ,i.e. programming 
language vs configuration source files. 

 Since the model is manually translated there is a huge 
possibility of having inconsistencies such as creating 
duplicate implementation of components in the 
realized code, inconsistency in names, ad hoc 
interfaces and so on.  

 Integrating the individual realized pieces of the M&C 
solution developed across the geography into the 
large M&C environment becomes a challenge. 

 Also the more generic system engineering tools are 
not very well aligned to the M&C domain for which 
it is being used and hence it is not possible to do 
domain specific analysis of the design created using 
these modeling environments.  

 It is difficult for the generic system engineering tool 
to adapt to the domain or problem specific 
vocabulary. 

ITER APPROACH 
In order to mitigate some of the above challenges 

specially the ones related to geographically distributed 
development teams, ITER conceptualized the Self-
Description Design (SDD) Editor Framework. This 
framework aims to incrementally integrate 
Instrumentation and Control (I&C) components built by 
various teams across geography for the ITER project. The 
idea is to provide a full integrated view of the systems and 
subsystems which are under the purview of CODAC, the 
supervisory M&C system at ITER. The SDD editor 
allows specification of the I&C components along with 
their structures, properties and functionalities using a 
common abstract vocabulary created by the ITER team 

which is then automatically translated into the underlying 
M&C implementation technology specific format which 
are EPICS, CSS and S7 PLC. 

As part of this framework, a set of tools have been 
implemented based on the concept of model-driven 
development, which facilitate capturing high-level 
specification of ITER's I&C component into a domain 
model, checking for various types of inconsistencies in 
the model, generating code specific to target technology 
such as EPICS and CSS and also, in some cases, 
retrofitting the changes made in the generated code back 
into the specification model.  

SDD Editor Components 
The architecture components of the SDD editor are 

briefly explained below - 
Model: Central to this environment lies ITER's M&C 
model, which acts as mould  to hold high-level 
specification of the M&C system description called as 
'Self-description data' (SDD). In the philosophy of model-
driven development, this model acts as 'Platform-
independent model' (PIM). One of the important 
highlights of this model is the separation of the structural 
and functional components of the I&C components as 
Physical Breakdown Structure (PBS) and Functional 
Breakdown Structure (FBS) respectively. In PBS, highest 
level of organization is termed as Plant System (PS), 
which holds physical components. Physical components 
are generically defined and are simply tagged as one of 
the many standard types defined by the ITER project. 
Only the part of the physical components in the I&C 
system that deal with sensor or actuator signals are 
captured as part of this definition. These physical signals 
are specified as part of respective components and are 
interfaced with rest of the system through slow and fast 
controllers. These controllers are part of both PBS and 
FBS.  Functionally, the ITER system is decomposed into 
three levels 'FBS Level 1' - maps to coarser plants 
systems at highest level, FBS Level 2 - maps to coarser 
I&C coordination, and FBS Level 3 - maps to individual 
I&C function such as temperature control and so on. Each 
I&C function has one or more functional variables which 
are entities with lowest granularity. A variable captures 
additional description such as alarm and archiving details, 
and needs to be either mapped to a physical signal or a 
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computation. Variables too are deployed on control units 
such as fast controller or plant system host (PSH). For any 
given FBS level 2, a plant system I&C (PSIC) entity is 
defined and is represented by one more control units, but 
only one PSH. PSH is also responsible for providing a 
generic or abstract interface of a plant system to the rest 
of ITER which it does through deriving global states of 
the plant system, e.g. if the system is up or down or in 
maintenance. To cater to the need of a PSIC to coordinate 
across plant systems, a higher level entity 'I&C Project' 
has been introduced to act as a place holder. Realization 
of this model consists of an entity-relationship model, its 
implementation as a relational database schema, a 
collection of Java classes with mapping to tables of this 
schema and domain rules to check consistency of the 
data. Operations on data are controlled by API exposed 
by the model implemented in Java. The API’s implement 
abstract interfaces so that the underlying implementation 
can change in due course of project execution and allow 
smoother evolution of model and its consumers.  There 
are project and domain specific rules built into the model 
that validates the data provided by the user and notify in 
case of issues that require corrections. As per convention, 
only a correct SDD specification can be used for code 
generation. The model also supports capturing 
implementation platform-specific information as well. 
 
User Interface: SDD editor is available both as a 
standalone Eclipse based product and also as a web-based 
based application. Using the SDD editor, a user can 
populate self-description data of plant systems, which 
gets pushed into the model and then to the database 
through model APIs. Consistency checks are built inside 
the editors which can be invoked independently by users. 
The editors facilitate in code generation, navigation as 
well as retrofitting the changes back into model.  
 
Code Generation: Code is generated as part of 'Forward 
Engineering' process. The code generation module refers 
to populated SDD, checks for consistency and finally 
generates source code and configuration files for various 
platforms that actually realize the ITER M&C system 
'CODAC'. The platforms include 'EPICS', 'Control 
System Studio' (CSS), 'Siemens Step7 PLC development 
environment' and 'RedHat Enterprise Linux' (for shell 
scripts). Each platform require generation of multiple 
artifacts - usually text files - called as 'targets', each target 
having its own 'Platform-specific Model' (PSM) and 
associated transformations - from PIM to PSM model-to-
model (M2M) transformation - and - from PSM to text 
model-to-text (M2T) transformation. To ease the latter 
transformation, text based templates are defined with 
appropriate blanks to be filled by PSM instance. A 
template engine evaluates these templates for a given 
PSM instance and for ITER SDD. Apache Velocity has 
been chosen as the template engine/framework for this.  
 
Retrofitting: Artifacts generated as part of forward 
engineering can be enhanced or modified using their 

respective platform provided tools. However, these 
changes are lost when code is re-generated. To tackle this 
problem when it is semantically possible for some of the 
important platforms such as EPICS, the technique of 
retrofitting has been employed. It involves parsing of text 
files using available or specifically written parser routines 
to identify changes, which are then pushed back into the 
model.  Changes such as deletions or renaming are not 
retrofitted and they need to be performed from either of 
the editors. 

Handling Complexity 
Some of the challenges with respect to complexity that 

the SDD approach deals with are mentioned below: 
 

Scale: Mechanism to verify and handle specification of 
large volume of Self-Description data(>=1000 variables) 
[6][7]. Feature to import bulk data from external sources 
solves this problem. 
Geographically Distributed Development:  Mechanism 
to integrate components developed across geography. 
Implements a central SDD repository where all the 
created specification is stored [7][8].  
Diversity: Mechanism to selectively retarget the SDD 
specification into target technology specific platforms. 
Support through the implementation of translator plugins 
and code generation templates [6][7][8]. 
Connectedness: As complexity of SDD specification 
grows due increased interdependency, it becomes 
challenging to verify the correctness of the target 
behavior. SDD tools facilitate this through incremental 
addition of domain specific rules [6][7][8]. 
Evolution: The complexity due to the long lifetime of the 
project creates stringent design requirements which 
mandate modularity, reusability, flexibility and 
adaptability to newer target technologies [7].  

FUTURE ENHANCEMENT 
The experience at ITER helped us conceptualize an 

integrated specification driven environment for building 
M&C solution that could be used across all similar 
projects such as SKA and help face similar challenges due 
to scale, complexity, diversity, safety criticality, 
reliability, availability, response times, data volumes, and 
timelines and so on. The section below provides our 
thoughts on how this approach can be enhanced. 

Complete M&C Domain Model  
Taking the ITER specification model as the basis we 

tried to identify and generalize the various types of 
specification elements that the M&C domain model will 
need to hold:  

 Control logic: List of commands and parameters, 
responses from command execution, validation rules, 
FSM control logic, control actions & scripts, 
command distribution logic, response aggregation 
logic, state management specifications. 
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 Communication: Addresses and ports, 
communication protocols and so on. 

 Data acquisition and processing: Data acquisition 
specifications, validation rules, worldview database 
schema, subscriptions, feedback control, logging & 
archiving specifications. 

 Events handling: Event and alarm detection rules, 
events and alarms acquisition specs, filtering of 
events and alarms, alarm handling and propagation 
specifications. 

 User interface specifications: Data elements, 
display widgets, layout, behaviors. 

 Safety and security specifications: Threat detection 
and response rules, authentication and authorization, 
data protection and network security configurations. 

 Reliability and availability: Fault detection and 
handling, configuration of mechanisms such as 
heartbeats, watchdogs and failover. 

 
The intention is to capture the consistency relationships 

and dependencies across these specification items failing 
which may result into various inconsistencies.  
 
The implementation of this domain model is a meta 
modeling task which is done by synthesizing the 
specification modules based on different existing 
methodologies such as SysML and standards such as 
RBAC[9] for security and so on. The model also is 
augmented with capturing consistency relationships. 
 

Specification Environment 
Our belief that the specification environment would 

need to support the typical M&C development life cycle 
which are as described below:  

 Define the controller requirements. Identify the 
context, the physical system and interfaces between 
themas a set of parameters and behaviors. 

 Decompose the M&C system into subsystems, 
typically following the hierarchy of decomposition 
of the physical instrument. Allocate the controller 
requirement among subsystems, determining the 
functional and engineering responsibilities of each 
subsystem (e.g., reliability, performance, safety etc). 
Capture these as blackbox specifications. 

 Design how the controller coordinates subsystems 
and provides services such as coordination and 
alarms handling to realize the overall system 
requirements. 

 Iterate the above steps for each subsystem until no 
further decomposition needed. 

 Provide tips, hints, warnings, errors and best 
practices within and across functional and non-
functional units. 

 
 

 

The implementation of such an environment is based on 
the following principles:  

 Usage of standards for each aspect of the 
specification model, wherever applicable instead of 
inventing representations. 

 Modularization of specifications, so that one module 
could be replaced with a newer standard without 
impacting the overall framework. 

 Identification of mutual consistency constraints 
among the specifications modules for different 
aspects, and checking them during specifications 
creation. These consistency relationships need to be 
updated whenever a module is updated, or even if a 
new technology platform is chosen that creates 
additional consistency relationships. 

 Capability to support retargeting to newer 
technology in the specification model. 

 Exploitation of existing tools and technologies to 
minimizing effort for implementation, user learning 
and so on. 

 Usage of the right metaphorsto capture structural and 
behavioral details visually or textually. 
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