
CONTINUOUS INTEGRATION USING LABVIEW, SVN AND HUDSON

O. O. Andreassen, A. Tarasenko, CERN, Geneva, Switzerland

Abstract
In the accelerator domain there is a need of integrating

industrial devices and creating control and monitoring
applications in an easy and yet structured way. The
LabVIEW-RADE framework provides the method and
tools to implement these requirements and also provides
the essential integration of these applications into the
CERN controls infrastructure. Building and distributing
these core libraries for multiple platforms, e.g. Windows,
Linux and OS X, and for different versions of LabVIEW,
is a time consuming task that consist of repetitive and
cumbersome work. All libraries have to be tested,
commissioned and validated. Preparing one package for
each variation takes almost a week to complete.

With the introduction of Subversion version control
(SVN) and Hudson extensive continuous integration
server (HCI) the process is now fully automated and a
new distribution for all platforms is available within the
hour. In this paper we are evaluating the pros and cons of
using continuous integration, the time it took to get up
and running and the added benefits such a solution has
given to our team. We conclude with an evaluation of the
framework based on the productivity and quality increase
and finally indicate new areas of improvement and
extension.

INTRODUCTION
Developing, building and distributing software at CERN
is a mixed and challenging process: on one side, when
working with operational equipment, it is mandatory to
carefully plan potential impact on the accelerator
complex, while on the other side, when working with
experimental prototypes or test benches, new ideas and
designs will be tested out all the time and the software has
to be adapted quickly.

The LabVIEW Rapid Application Development
Environment (RADE) [1] came to life to cope with this
agile environment, giving users the means to quickly
solve new challenges and at the same time provide
stability for long-lived or critical applications. We have
approximately 500+ LabVIEW users at CERN, of which
~100 uses RADE, all developing in their own unique
environment. Therefore we had to create a release scheme
that could be used in the most popular operating systems
(Linux, Windows and OS X).
 To ensure that bugs, requirements and other past
experiences are considered in every new release, unit
testing is performed on each critical item. This work and
the associated release process itself where in the past all
done manually or semi automated through scripts and
custom tailored tools.
With the framework growth, a full-featured distribution

typical would take from a day to a week to complete.

As an example one new RADE release cycle involves:
• Adding new libraries
• Running unit tests on the new libraries
• Validating the outcome of the test
• Bundle it all in to an installer.
• Testing the installer on a “clean” target (removing

potential environmental misconfiguration issues)
• Rebuild, the application once deemed stable
• Uploading the release to the repository

This led us to investigate different automation and

distribution methods such as Continuous Integration (CI),
source controls and unit testing tools that were compatible
with LabVIEW. The main challenge was finding a tool
that could facilitate CI on a graphical application such as
LabVIEW.

Trough studies and tests, several highly customizable
and easy to use tools were identified, however either they
did not offer any bindings or accessories facilitating
integration of graphical programming languages, or they
could not work in a cross platform environment which
was another requirement for us.

All methodology, resources, scripts and deployment
tools already used in the team were inventoried and
assembled into a fully automated, integrated and low
maintenance build engine that in less than one hour would
test, build, document, distribute and deploy all our core
LabVIEW libraries.

DEVELOPMENT METHODS
In order to reduce the testing and deployment time as
much as possible while keeping the robustness from a
traditional software project we landed on an agile based
development style, with a test-driven execution. Through
agile methods, tasks and projects are split into smaller
increments that require minimal planning. Every iteration
involves a small cross-functional team working on all
disciplines: planning, requirement analysis, design,
coding, unit testing and acceptance testing. At the end of
the iteration, the product or result is demonstrated to the
stakeholders, minimizing risks and giving room for fast
changes and adaptations [2].

This methodology described by E. A. Edmonds in 1974
[1] became known later when a group of software
developers published what they call the “Manifesto for
Agile Software Development” [3].

CONTINUOUS INTEGRATION
PRINCIPLES

CI is a software engineering practice where small or
isolated changes are immediately tested and reported on
when they are added to a larger code base. Therefore if a
defect is introduced in the code base, it can be identified

MOMIB08 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

74C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

and corrected without delay. In addition CI software tools
can be used to automate testing and to automatically
generate documentation [4].

Continuous integration has evolved since its
conception. Originally, a daily build was the standard
practice whereas the usual rule today is that each team
member submits its work on a daily (or more frequent)
basis and a build shall be conducted with each significant
change.

Hence, when used properly, continuous integration
provides constant feedback on the status of the software
and its defects are detected early on in development. In
addition and as side benefit the defects are typically
smaller, less complex and easier to solve [4].

Figure 1: Continuous integration process.

Figure 1 shows a typical automated, test driven CI
system, where developers commit their code to a central
repository (SVN in this case), then the Hudson CI engine
picks up the committed software (either “on change” or
periodically), runs unit tests, and depending if the test(s)
fail or pass, creates the deliverables and/or notifies the
developer.

TOOLS SELECTION
An essential part of a test driven development

environment is the tool selection. As CERN standardizes
on SVN, it was a natural choice for source control, but the
core element for complete automation is the CI engine
that has to:
• Be compatible with the existing SVN repository
• Be able to execute any programming language or

script needed in the build process.
• Run on all our main operating systems (Linux,

Windows and OS X),
• Report any issue(s) encountered automatically.
• Be easy to maintain
• Have a plugin based and flexible pool of tools

available
After evaluating the most common CI tools on the

market we the selected the tool that had the easies setup
and best interface: Hudson CI (table 1).

Table 1: Comparison of CI Tools

Name Platform SVN
SCM
support

Mail
Support

Other
Builders

Bamboo Servlet Yes Yes cmd
line,
Bash

Hudson Servlet
Container

Yes Yes Most
scripting
tools

CControl Cross
Platform

Yes Yes catch-all
'exec'

Continuum JDK Yes Yes ----

FIRST INTEGRATION
A proof of concept was set up to make sure that the CI

engine could repeatedly run the jobs needed without
failing and creating false positives.

The conceptual test was performed on an SLC 5 x64
based machine. It involved the following steps:
• Download source from a SVN repository,
• Execute a LabVIEW application builder trough

Hudson’s scripting interface
• Compile a simple test application.
• Running the application automatically trough the CI

engine
• Write an output of the application to a log file and

the console

Initial Testing, Issues and Solutions
The initial test was repeated every hour for 48 hours.

Trough the test we made three important discoveries that
had to be solved:
• On Linux it is not possible to build a LabVIEW

based application without a graphical environment.
We had to use a Virtual Network Computing (VNC)
server [6] which would function as a frame buffer
where LabVIEW could execute its graphical
dependencies. The introduction of the VNC interface
made it possible to run LabVIEW based server tools
on headless Linux systems, and it mad it possible to
graphically configure and intervene with server
instances without the added development overhead
of an additional client interface.

• The Hudson interface listens to standard
input/output. A failed test will only be marked as
failed if the application or script sets an exit flag not
equal to zero. Whereas if you set an exit flag within
the LabVIEW environment, it signals the application
to quit and blocks any consecutive tests without
restarting the application. This is solved by making
use of the built in standard output pipes and then
have a parallel Linux/windows batch process
listening to the unit test outcome, setting an exit flag
if it failed.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOMIB08

Software Technology Evolution

ISBN 978-3-95450-139-7

75 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

• The SVN authentication times out after 24 hours
(using the ssh+svn protocol) and without any
authentication management one has to manually log
in after every timeout. This is solved by switching to
“https” protocol and by using certificates for re-
authentication [7].

Architecture
The RADE LabVIEW package has to be compiled for 5

different platforms, 32 and 64 bit operative systems and
consist of many different build types. All the builds are
orchestrated trough a main instance of Hudson, and built
on 5 slave nodes. Figure 2 shows a simplified overview of
the RADE CI architecture.

Figure 2: RADE CI architecture.

CI VERSUS MANUAL BUILDS
With the introduction of CI the release process is

reduced from one day to about 1 hour (53 minutes), and
makes it possible for the developers to work on other
tasks while the build is taking place (no interaction
needed).

In addition, automating the tasks removes typical
“operator errors” that happen when doing repetitive work.

Hence it is now possible to introduce new toolkits and
software in the framework in mere minutes and to
distinguish between stable and unstable builds. As a result
of this, we can support parallel releases for demanding
and important customers, in the same environment used
for the stable source.

An added bonus associated with the continuous
integration is the early feedback. Since all new and legacy
unit test are executed on every release, the developer get
immediate feedback if a change broke modules in the
framework, and can start sorting out the issues at once
[5].

REMARKS AND ISSUES
However, automated builds have its downsides, to save

time in the release and distribution process, you have to
make compromises when setting up the environment:

• All stakeholders and developers have to follow
precise guidelines, fixed naming schemes and
structures not to break the automation, or cause
trouble for other builds.

• The CERN passwords and certificate management
imposes that a few times a year, the certificate
enabling and authenticating communication with the
source code repository has to change. This blocks the
CI environment.

• To deal with a graphical tool such as LabVIEW is
tricky in an environment designed for textual code. It
implies setting up virtual displays, adapting fonts and
avoiding dialogues in your builds that will block the
execution.

• In the CI environment there isn’t a built in monitor
or notification if one of the slave modules goes
down.

CONCLUSION & FUTURE
IMPROVEMENTS

The continuous integration and automation of the
RADE framework has greatly improved the delivery time,
quality and frequency of new software. It has made the
framework more robust through preventive testing and
fault elimination before distribution. Automating these
tasks add some maintenance overhead for the build
environment itself, nevertheless the advantages and
overall time saved makes it worth the effort.

Since the slave nodes are not running build jobs all the
time, we plan to service out the CI engine. By sending a
simple command to the HCI interface, one can download,
identify, build and deploy software on all targeted
platforms in mere minutes.

We are also working on improving the overall build
environment, centralizing the CI instances, making
management of certificates, naming schemes and create
more robust and less demanding templates.

REFERENCES
[1] O. Ø. Andreassen et al. “The LabVIEW RADE

framework distributed architecture”, ICALEPCS
(2011), Grenoble, France

[2] E. A. Edmonds, “A Process for the Development of
Software for Nontechnical Users as an Adaptive
System”, General Systems 19: 215–18.

[3] Beck, Kent et al. "Manifesto for Agile Software
Development". Agile Alliance. Retrieved 2010-06-
14. (2001)

[4] M. Rose, “Continuous Integration (CI)”, (2008),
http://searchsoftwarequality.techtarget.com

[5] K. Beck, "Embracing Change with Extreme
Programming". Computer 32 (10): 70–77 (1999)

[6] T. Richardson, Q. Stafford-Fraser, K. R. Wood, A.
Hopper, "Virtual network computing", IEEE Internet
Computing 2 (1998)

[7] S. Fisher, “Starting and accessing Hudson”, (2013),
http://wiki.eclipse.org

MOMIB08 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

76C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

