
IEPLC FRAMEWORK, AUTOMATED COMMUNICATION IN A

HETEROGENEOUS CONTROL SYSTEM ENVIRONMENT

F. Locci, S. Magnoni, CERN, Geneva, Switzerland

Abstract

In CERN accelerators control system several compo-

nents are essential such as: Programmable Logic Con-

troller (PLC), PCI Extensions for Instrumentation (PXI),

and other micro-controller families. Together with their

weaknesses and their strength points they typically present

custom communication protocols and it is therefore diffi-

cult to federate them into the control system using a single

communication strategy. Furthermore this dependency to

the physical device interfaces and protocols makes most

of the code not reusable and the replacement of old tech-

nology a difficult problem. The purpose of IEPLC ([1]) is

to mitigate the communication issues given by this hetero-

geneity; it proposes a framework to define communication

interfaces in a hardware independent manner. In addition it

automatically generates all the resources needed on master

side (typically represented by a FEC: Front-End Computer)

and slave side (typically represented by the controller) to

implement a common and generic Ethernet communica-

tion. The IEPLC framework is composed of a set of tools,

scripts and a C++ library. The configuration tool allows the

definition of the data to be exchanged and their instantia-

tion on different controllers within the control system. The

scripts generate the resources necessary to the final com-

munication while the library eventually allows the appli-

cation on the master side to send and receive data to/from

the different controllers. This paper describes the different

components of this tool by focusing on its main objectives,

namely: defining standard interconnection ways and clear

communication interface between FECs and controllers;

reducing user developments and configuration time.

CONTEXT

As in all the big plants, CERN accelerator complex re-

quires scalable and sophisticated control systems in order

to maneuver and guarantee the proper functioning of all

the components. To perform data acquisition and actua-

tion over all those equipment a large variety of controller is

adopted. CERN prefers using off-the-shelf controllers so as

to benefit from company support for any issue encountered.

However, there are tasks that standard components cannot

achieve as well as there are tasks for which licenses costs

are prohibitive or not worth the benefit. Finally, depending

on the skills and the background of the user, personal tastes

do matter in this field. Due to all these reasons lot of dif-

ferent components are used at the same time. All of them

have to be integrated in a common structure to cooperate

and federate with all the other devices.

Controller Families
IEPLC was initially developed in order to address the

problem of automatic code generation for communication

purposes for PLC devices. It now supports communica-

tion with different controller families but it is intrinsically

designed keeping PLC as reference controller. Different

brands of PLC have been addressed: Siemens SIMATIC-

S7 and Schneider MODICON controllers with their re-

spective development tools (Step-7 and Unity Pro) while

Beckhoff TwinCAT components will be supported before

end of 2013. IEPLC integrates a second controller fam-

ily, widely used at CERN, mainly for instrumentation or

specific systems: PXI and Compact-RIO from National In-

strument (NI). Finally, much less used at CERN but nev-

ertheless interesting, microcontrollers based on simple mi-

croprocessor for embedded system proves very interesting

when size, flexibility, power-consumption and price are the

main issue. Unlike other hardware, the microcontroller

does not specify any communication protocol but was eas-

ily integrated in IEPLC infrastructure using Modbus/TCP

standard already implemented for Schneider PLCs ([4]).

The Three Tier Control System
CERN’s control system uses industrial components such

as SCADA (Supervisory Control and Data Acquisition) es-

pecially for cryogenic and vacuum systems. The core of

the CERN control infrastructure is however provided by a

custom solution that better fulfills requirements within a

complex accelerators environment (especially for real time

control and timing aspects). As shown in Fig. 1, the control

system splits over three different responsibility tiers which

communicate among them via TCP-IP protocol over Giga-

bit Ethernet connection.

Figure 1: Three-tier control system.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC031

Integrating Complex or Diverse Systems

ISBN 978-3-95450-139-7

139 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Both equipment controllers and Front-End Computers

(FECs) belong to the resource tier. The latter acts as

bridges between the presentation tier (operation tools and

control room software) and the physical layer. The FEC

is implementing the accelerator device model and its pub-

lish/subscribe paradigm and handles timing and synchro-

nization. Two types of FEC are mainly adopted: VME plat-

form with extension modules (Timing, AC/DC, DIO, func-

tion generator, field buses, etc.) and Industrial PC rack-

mounted crate (mostly used for general services and net-

work gateway). Both platforms run 64bits real-time Scien-

tific Linux. The Front End Software Architecture (FESA)

abstracts all these components providing a comprehensive

framework for designing, coding and maintaining Linux

equipment software ([2],[3]). In this context, IEPLC takes

the responsibility for standardising the integration of indus-

trial components within CERN’s controls infrastructure.

CHALLENGES

PLC manufacturers, as well as many other controller

vendors, usually implement a specific communication pro-

tocol for their devices. This implies the customization of

the code used to control such a device, hence reducing its

portability and reusability. This situation is not sustain-

able at CERN given the number and diversity of the control

equipment. In complex control system, operative mode, in-

terfaces and data model definition have priority on deciding

the physical adopted devices. On the other hand, different

technologies can be adopted for similar features and could

expose the same kind of data. Our goal is to find a com-

mon solution allowing communication between FECs and

equipment controllers. The IEPLC framework automates

the code generation for the different controllers and stan-

dardises the communication with them under a simple API,

reducing the amount of the client code, hiding all the pro-

prietary solution and making data structure reusable.

MAIN CONCEPTS

Relying on the users requirements and on the experience

they got for years to integrate industrial components in the

control infrastructure, a set of rules and concepts has been

defined to delimit the scope of the IEPLC product. The

framework has to:

• normalize the controllers connection based on Ether-

net medium

• discharge experts from implementing communication

software, on both side: client and controller

• offer suitable interface for the accelerator De-

vice/Property model

• propose a non-intrusive solution for the controller

software by limiting the use of hardware resources

• define high-level service for the client side (Front-End

software)

• offer fast and lightweight configuration and genera-

tion tools

• be open and scalable for future extensions

• be portable by limiting the dependencies as much as

possible

SOLUTION

IEPLC framework consists of four main components:

• A generic device-oriented data model which defines

and structures the data transmission between the con-

trollers and the front end computers.

• A configuration tools to define the IEPLC connection

and to generate the data mapping for the controller and

the client software.

• A generic access library for the front end client that

implements the communication contract.

• A diagnostic and debugging tool which relies on the

generic library allowing the users to quickly and easily

access the IEPLC controllers for testing.

The Device Data Model
The IEPLC configuration tool allows creation of the two

XML documents required for the generation process. The

class document (also called design document) defines the

structure of the exchanged data in a completely hardware

independent manner. The elementary data of the class is

called a ’register’. Registers are grouped into structures

called ’blocks’ which will be transmitted in a single trans-

action. A block has an access mode applied to all its regis-

ters (read-only, write-only or read-write). The layout of the

class (registers and blocks position) and generic attributes

of the registers (format, dimension) are used to map the

registers in the memory of the controller at the deploy-

ment phase. The mapping document (or deployment doc-

ument) defines the binding between the physical device and

the class instances. It has the purpose of instantiating the

classes for a physical controller. IEPLC allows the same

class to be instantiated over different heterogeneous con-

troller. In the same way instances of different classes can

coexist on the same controller on the same time. A graphi-

cal representation of such a concept is given in Fig. 2.

The Workflow
Editing and storing XML documents is done using a Java

Configuration tool which relies on XML schema and con-

straint language (CliXML) to automatically validate the

correctness of the class and mapping documents, Fig. 3

[stage 1]. The Generation [stage 2], fully automated by a

set of python scripts, generates an XML document used to

provide the library with all information required to com-

municate (hostname, protocol, mapping, etc.) and a set of

documents containing the code to be uploaded on the con-

troller itself [stage 3]. The library that is instantiated by

MOPPC031 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

140C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Integrating Complex or Diverse Systems



Figure 2: PLC mapping concept.

the client application running on the FEC (FESA server,

python scripts, C/C++ software, etc.) first loads the param-

eter file(s) [stage 4] and eventually begins communicating

with the physical controller(s) [stage 5].

Figure 3: IEPLC Workflow.

The Communication Protocol
Standard protocols. The PLC communication proces-

sors (CP) offer passive server functionality (Siemens S7

PUT/GET and Modbus/TCP for Schneider) which can be

used to avoid specific PLC code for data communication.

In the same way, IEPLC relies directly on CVI Network

Variable mechanism (CNV [5]) for NI controllers com-

munication and Modbus/TCP for Rabbit microcontrollers

([4]). Using native protocols has the great advantage of not

impacting the equipment process and freeing the user from

communication aspects. It also simplifies considerably the

diagnosis of communication since transmission behaviour

is pre-defined and independent. In return, IEPLC service is

based on polling mechanism and does not support data sub-

scription but can be easily implemented from upper layers

if required.

Data consistency. Since IEPLC protocol is based on

asynchronous mechanism, it cannot guarantee that each

data block is transmitted consistently when it exceeds the

maximum size defined by the CP hardware. Particular cau-

tions are required in this case: limited block size, single

block transaction and use of uninterruptible memory trans-

fer within the controller process.

Data persistency. Unlike volatile variables, initial value

or processing value of persistent data (constants, com-

mands, settings, etc.) must be consistent on both sides

(FEC and controller) each time a connection is established.

The IEPLC library supports the automatic synchronization

of the persistent registers at connection time relying on the

specialist configuration: Controller or FEC is the backup

source, respectively Master or Slave mode.

Database. IEPLC class instances are not directly ex-

posed to the supervision level. It is therefore not necessary

to define them in the central database; NFS file system has

been chosen to store and manage all IEPLC configurations.

This solution further increases the product portability.

The Source Code Generation
Using native protocols of the Ethernet CP and keeping

full control of the communication from the FEC simplifies

greatly the generated code required for the controller side.

In fact, a simple shared data structure is generated. The

user can easily import the code in his project without inter-

fering with the equipment process if already exists. The

transmission delays are directly linked to the number of

exchanged frames. In order to optimize the traffic IEPLC

can generate contiguous arrangement of blocks containing

the data of all the device collection (known as “BLOCK

mode”). In contrast, when performance is not a priority,

user can choose the “DEVICE mode” which offers a more

natural organization of the data and allows the specialist to

use the object-oriented capabilities for certain PLCs. The

addressing of a register for NI controller is much simpler

since the data is not allocated in memory but simply dis-

tributed on the network. In this case, IEPLC just specifies

a “uniform resource locator” based on the IEPLC compo-

nents and respecting the Labview variable definition.

The CLIB

IEPLC C++ library handles the communication between

the FEC and the device whose source code has been gen-

erated. At run-time it loads the correct parameter file de-

pending on which class/version and which controller the

user tries to communicate with and hides all the commu-

nication issues through a very simple and high-level API

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC031

Integrating Complex or Diverse Systems

ISBN 978-3-95450-139-7

141 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



(Fig. 4).

Figure 4: CLIB structure.

CLIB implements the low-level protocols for PLC and

microcontroller (S7, Modbus/TCP) and for PXI platform

support (CNV), including (re)connection mechanism, data

transport, communication parallelism, diagnostic, etc. The

library uses object-oriented approach to allocate the dif-

ferent components of the connections in the client soft-

ware context. CLIB service provides access to the set of

PLCs (Cluster) that have been deployed for the selected

class/version. Each PLC object of this cluster provides ac-

cess to the underlying equipment instances (Device) and

their related data (Register). The API fully relies on prede-

fined symbols (from class design) making memory object

addressing fully transparent. Each object layer gets gen-

eral services while hardware access methods (send and re-

ceive data blocks) are available from different object levels

to offer maximal flexibility in the data transmission (single,

multiple or global). Eventually register object implements

methods to set and get data value respecting its predefined

format and access-mode (RO,WO,RW).

The Diagnostic Tool
IEPLC Diagnostic Tool provides the user the possibil-

ity of interoperating with hardware adopting the IEPLC

framework for diagnostic and testing purposes. Through

a graphical interface, it gives full freedom to access any of

the hardware which is deploying the selected class. Full

control is given in sending and receiving data from there,

at cluster, PLC and device level. The specialist can thus

validate his complete configuration without implementing

a single line of code on the client side.

POSSIBLE EXTENSION

Analog and digital input-output modules are amongst the

main components of control systems. Previous sections

have presented how IEPLC proposes a way of communi-

cating with different controllers but did not explain how the

data are actually acquired from the different controllers and

how the controllers physically actuate the received com-

mands. Depending on needs, desired performance and

specificity of the controlled equipment, the CERN control

group offers various solutions based on house-made or in-

dustrial interfaces. The most common are the following:

• The FEC (usually VME or CompactPCI platform)

used as direct IO system

• The FEC (usually PC rack-mounted system) used as

WorldFIP bus controller

• The FEC (usually PC rack-mounted system) used as

Ethernet gateway for industrial field buses

Individually, those solutions are not always enough to

fulfill CERN requirements in term of performance, flex-

ibility, scalability and maintenance. Unfortunately it is

often difficult to propose an optimal solution which com-

bines advantages of both technologies. An alternative so-

lution could be to standardize the integration of custom

hardware within the front-end computer using IEPLC and

FPGA technology. An extension of the IEPLC framework

is proposed in order to be able to communicate with generic

wishbone slave cores ([7]). The FPGA will be used as

a bridge between the specific IO peripheral and the Eth-

ernet connection using a project developed by GSI ([6])

and CERN called Etherbone ([8]). Integrating Etherbone

into the IEPLC library, it should be relatively easy to send

and receive data to/from the generated core but we need to

gather all the constraints from the different sides to evaluate

whether is worth implementing such extension.

REFERENCES

[1] Stefano Magnoni, “IEPLC, automated com-

munication in a heterogeneous control sys-

tem environment.”, July 2012, Master’s Thesis,

http://www.library.lu.usi.ch/cerca/bul/memorie/master/pdf/

1112Magnoni.pdf

[2] Michel Arruat, “Front-end software architecture”,

2007, 11th ICALEPCS Int. Conf. on Accelerator,

http://accelconf.web.cern.ch/accelconf/ica07/PAPERS/

WOPA04.PDF

[3] Jean-Luc Nougaret, “Fesa essential”, 2004,

CERN, http://project-fesa.web.cern.ch/project-

fesa/binaries/documents/FesaEssentialsBundle.pdf

[4] Andy Swales, “Open Modbus TCP speci-

fication”, March 1999, Schneider Electric,

http://www.rtaautomation.com/modbustcp/files/

Open ModbusTCP Standard.pdf

[5] National Instruments, “Comparison of LabWindows/CVI

Network Variable Connection Types”, 2008, NI documenta-

tion, http://www.ni.com/white-paper/7515/en/pdf

[6] GSI, “Helmholtzzentrum fur Schwerionenforschung

GmbH”, http://gsi.de/

[7] WikipediA, “Wishbone (computer bus)”,

http://en.wikipedia.org/wiki/Wishbone (computer bus)

[8] Julian Lewis, “Functional Specification: EtherBone Core”,

September 2010, http://www.ohwr.org/documents/30

MOPPC031 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

142C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Integrating Complex or Diverse Systems


