
OPTIMIZING EPICS FOR MULTI-CORE ARCHITECTURES*

Ralph Lange, Helmholtz-Zentrum Berlin / BESSY II, 12489 Berlin, Germany
Franck Di Maio, ITER Organization, St. Paul lez Durance, France

Abstract
EPICS is a widely used software framework for real-

time controls in large facilities, accelerators and
telescopes. Its multithreaded IOC (Input Output
Controller) Core software has been developed on
traditional single-core CPUs. The ITER project will use
modern multi-core CPUs, running the RHEL Linux
operating system in its MRG-R real-time variant. An
analysis of the thread handling in IOC Core shows
different options for improving the performance and real-
time behavior, which are discussed and evaluated. The
implementation is split between improvements inside
EPICS Base, which have been merged back into the main
distribution, and a support module that makes full use of
these new features. This paper describes design and
implementation aspects, and presents results as well as
lessons learned.

INTRODUCTION
The ITER project hardware platform for fast controllers

(FC) will rely on modern industrial PCs with fast multi-
core Intel CPUs, running the MRG-R real-time version of
the Red Hat Enterprise Linux operating system. External
vendors preparing fast controls for their subsystems are
concerned about the real-time properties of their fast
control loops running inside or outside the EPICS IOC on
the FC, when the IOC is running on the same machine.

Thread handling within the EPICS IOC has been
designed with single-core processors in mind. Allowing
to fine-tune the system by dedicating specific cores or
core sets to either specific threads of the IOC or the
external control loop requires extensions of the EPICS
Base software and addition of multi-core and OS specific
functions using those extensions.

We describe the thread handling inside the EPICS IOC,
identify areas for optimization, present design and
implementation of the MultiCore Utilities package and
the changes to EPICS Base, show first results, and
highlight ways for further improvement.

THREAD HANDLING IN EPICS

IOC Threads
From the very beginning of the EPICS project [1], its

IOC application has been multithreaded. Fig. 1 shows the
threads running on an EPICS 3.15 IOC, without any
sequencer state machines or Channel Access (CA)
communication being active.

Figure 1: Threads on an empty IOC.

These threads belong to different functional groups.

Scan Threads. Periodical scanning of records is
performed by one thread for each defined scan period,
that keeps a list of the records that have their SCAN field
set to that period. Whenever a scan thread wakes up, it
processes the records in its list, then sleeps until it is due
for the next period. The scan once thread handles one-
time processing of records, working off a FIFO queue of
records instead of a list.

The assigned thread priorities range between 60 and 70,
with scan threads for smaller periods being assigned
higher priorities, so that in a real-time environment faster
scan threads will preempt the slower ones.

Callback Threads. Three general purpose callback
threads handle the processing of I/O triggered records.
Like the scan once thread they work off queues, and
interrupt handlers request processing of records by an API
call that pushes the request on the appropriate queue.

These threads are mapped to the three available record
priorities, and are assigned the priorities 59 (LOW, below
scan threads), 64 (MEDIUM, in the middle of the scan
thread range), and 71 (HIGH, above scan threads).

Channel Access Threads. An IOC without external
Channel Access clients runs five CA threads. The CAS-
UDP thread (priority 16) handles incoming naming
requests. The CAS-beacon thread (priority 17) sends UDP
alive messages to clients. The CAS-TCP thread (priority
18) listens for incoming TCP connections, and spawns off
the individual communication threads. The dbCaLink
thread (priority 50) handles the CA client-side
connections that originate from links in the local database.
The CAC-event thread (priority 51) handles the local CA_______________________________

*Work supported in part by German Bundesministerium für Bildung und
Forschung and Land Berlin.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC124

Software Technology Evolution

ISBN 978-3-95450-139-7

399 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

updates that have to be sent to fields inside the local
database.

For every new remote CA client that connects and every
new outgoing CA connection, one pair of threads is
created, servicing the TCP circuit that connects to the
peer. The CAS-event thread (priority 19-39) handles
sending out the CA updates to the client, while the CAS-
client thread (priority of CAS-event + 1) handles the
incoming messages. The CAC-TCP-recv thread (priority
49) handles incoming messages from the remote server,
while the CAC-TCP-send thread (priority 51) sends
outgoing messages.

Miscellaneous EPICS Threads. The _main_ thread
runs the IOC shell. The errlog thread (priority 10)
forwards error messages to configured listeners, locally or
across the network. The taskwd thread (priority 10)
monitors the status of threads that have registered with it.
timerQueue threads are started by the EPICS timer
facility, whenever the user creates a timer queue. The
Access Security layer starts the asCaTask thread (priority
57) if it needs to connect through CA to determine access
right conditions.

Sequencer State Sets. Each sequencer state machine is
running in its own thread (priority 50), the sequencer also
starts an auxiliary thread seqAux (priority 51).

Other Threads. Other applications, drivers, and the
operating system itself may start additional threads.

Thread Scheduling and Policy
On dedicated real-time operating systems, EPICS is

using the system scheduler's policy. E.g., vxWorks and
RTEMS use combinations of strict priority-based
scheduling and round-robin policy.

On Linux, without any additional configuration and
fine-tuning, the default Linux scheduler will control
scheduling of threads and their distribution over the
available CPUs. In this case, the priorities are ignored.

The scheduler used in the Red Hat Enterprise Linux
(RHEL) version 6 kernel (2.6.32) is the Completely Fair
Scheduler (CFS) by Ingo Molnár [2]. The group
scheduling improvement added later to the 2.6.38
kernel [3] does not affect real-time systems, as it
addresses only machines in the desktop and workstation
classes.

The “fair queuing” algorithm that CFS implements
ensures that threads with little activity and threads with a
lot of activity share the available CPU resources in a fair
way. For the regular EPICS threads inside an IOC without
real-time duties, this scheduler will suffice.

When priority scheduling is enabled, all EPICS threads
will be started using SCHED_FIFO scheduling policy
(see chapter 4.2), and the priorities will be used.

There is no EPICS API for setting or changing the
scheduling policy, thread priorities for EPICS threads are
hard-coded.

EPICS ON MULTI-CORE (SMP) SYSTEMS
The EPICS IOC has been developed for single-core

systems. With the introduction of the 3.14 branch of
EPICS Base that allowed IOCs to be run as processes on
host type systems, all necessary mechanisms were added
to safely run the IOC on multi-core (SMP) architectures.
Many installations are running large numbers of host-
based IOCs in production, usually on Intel- or Sun-based
hardware, often in virtualized environments.

As multi-core CPUs have been entering the market for
embedded and real-time hardware only slowly, most
EPICS installations still run their real-time systems on
single-core CPUs (mostly PPC architectures using VME
or Compact-PCI form factor), and no extensive
optimizations for running real-time IOCs on SMP systems
have been made.

Dedicated Cores
Multi-core real-time systems like the ITER Fast

Controller might want to guarantee execution time to
specific driver threads by reserving cores exclusively. To
achieve this, the available set of cores may be split
between the EPICS IOC and specific real-time threads by
setting the thread CPU affinity to disjunctive subsets, and
routing interrupts to the appropriate cores by setting the
interrupt CPU affinity.

The EPICS IOC may run on any number of cores.

There is no EPICS API for setting or changing CPU
affinity for threads or interrupts.

Possible IOC Thread Improvements
Scan Threads. The periodic scan threads are spread

onto the available CPU cores by the Linux scheduler.
They will run in parallel, should they be due at the same
time. The lock sets used by EPICS (see chapter 5.5
“Database Locking” in [4]) provide proper locking of
records across CPUs. Splitting the work of a single scan
thread over multiple cores would improve the throughput
of processing the records on one scan period list, without
affecting the real-time behavior.

On the other hand, periodic scans honor the PHAS field
of EPICS records. I.e., for any record with a given PHAS
value it is guaranteed that before it starts processing, all
records with a lower PHAS value in the same scan period
have finished processing. The current implementation
achieves this by having exactly one thread processing a
list of records sorted by PHAS value. To ensure PHAS
order synchronization across multiple tasks, the end of
processing would have to be tracked and communicated
between parallel tasks, a major change.

Callback Threads. The callback threads can also be
run on different CPU cores by the scheduler, so that

MOPPC124 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

400C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

callback record processing for I/O scanned records of
different priority can be executed in parallel. Running
multiple callback threads for the same priority in parallel
on different CPUs would immediately shorten the average
use of the callback queue and noticeably reduce interrupt-
to-record-processing latency, which is a key figure for
EPICS real-time behavior. Parallel callback threads would
also greatly improve deterministic behavior of EPICS,
which is worsened by using queues between interrupts
and record processing. (See the discussion in [5].)

Channel Access Threads. The Channel Access
communication works asynchronously, with low priority,
and queues or buffers data updates at multiple levels. It
does not affect the real-time behavior of an IOC. The
default scheduler should do an excellent job for the CA
threads.

Sequencer State Sets. A sequencer state set
implements a finite state machine, that switches between
a fixed set of states and transitions. A single thread is an
excellent representation for a state machine, and no gains
can be expected through parallelization.

Other Threads. The effects and side-effects of
parallelization and scheduling for other threads highly
depend on their specific functionality.

As mentioned above, real-time threads that are part of a
low-lever driver or a fast feedback loop might have a
good chance of improving their deterministic behavior
when run on a dedicated CPU.

PARALLEL CALLBACK THREADS
Running parallel callback threads adds multiple

consumers to each of the three priority-mapped queues.
To allow an efficient implementation of a thread-safe
queue, a spin lock API was added to the Operating
System Independent (OSI) layer of EPICS, with
implementations for all supported platforms and
architectures. The spin locks allowed for a thread-safe
variant of the generic queues, and parallel callback
threads were added to EPICS Base.

These changes have been proposed for merging into
EPICS Base 3.15.

EPICS MULTI-CORE UTILITIES
An EPICS Multi-Core Utilities library was created [6],

that contains tools to allow tweaking of real-time
parameters for EPICS IOC threads running on multi-core
processors under the Linux operating system.

These tools are intended to set up multi-core IOCs for
fast controllers, by:

· Confining either parts or the complete EPICS IOC
onto a subset of the available cores, allowing hard
real-time applications and threads to run on
dedicated cores.

· Changing priorities of callback, driver or
communication threads with respect to database
processing.

· Selecting real-time scheduling policy (FIFO or
Round-Robin) for selected threads.

· Locking the IOC process virtual memory into RAM
to avoid swapping.

Rule-Based Thread Properties
This module allows user-specified rules to modify real-

time properties of EPICS IOC threads:

· Scheduling policy: Scheduling mechanism used for
the thread. When POSIX scheduling is enabled, the
default mechanism is FIFO, but OTHER and Round
Robin are also supported.

· Scheduling priority: EPICS priority value that gets
converted to the OS real-time priority schema.
Absolute and relative values are supported.

· CPU Affinity: Set of CPUs that the thread is allowed
to run on.

Rules are read from system or user level rules files,
each specifying a regular expression and operations on
these properties. The operations are executed when the
regular expression matches the EPICS thread name.

Commands for the EPICS iocShell allow directly
manipulating the properties of any existing thread, and
configuring the active set of thread rules.

Advanced Thread Show Routines

The existing EPICS thread show routines have been
extended to show scheduling policy and CPU affinity in
addition to the usual output.

Memory Locking

Functions (also available from the iocShell) are
provided that allow locking the process memory into
RAM to make sure no page faults occur, which would
introduce unpredictable interruptions and latency.

Implementation

The implementation was split in two parts:

All generic changes were stripped down for minimal
impact and integrated into the EPICS Base 3.15 libraries.
Most of these changes consist of adding hooks that allow
user code to be called in certain situations, e.g., whenever
a thread is created in the IOC.

All changes specific to multi-core CPUs or the
operating system were added to the Multi-Core Utilities
library, that makes full use of the new hook facilities in
EPICS Base.

The changes in EPICS Base have been folded back into
the main line development branch, the Multi-Core
Utilities were published in the EPICS Applications
project on SourceForge [6].

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC124

Software Technology Evolution

ISBN 978-3-95450-139-7

401 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

FIRST RESULTS

A sample user level application (based on the C++
asynPortDriver class described in [7]) has been created,
featuring a fast control loop inside an IOC. The code uses
a timing card and an I/O card from the ITER FC hardware
catalog to sample a frequency generator signal and
produce marker signals for time measurements.

Software time measurements are taken and fed into
histogram records to show their distribution over many
iterations of the control loop. The hardware marker
signals are used for an oscilloscope-based validation of
the software time measurements.

While many properties of the setup still have to be
tested and their influence quantified, Fig. 2 shows the
complete span of achievable improvements. The
histogram above shows the overall control loop time
without any modification to the thread system, the
histogram below shows the same timing with separation
of the control loop onto a dedicated core, and after
increasing its scheduling priority.

The test is run on a dual-core CPU system of the
“workhorse” FC type.

Figure 2: Total Control Loop Time Measured Without
and With Core Affinity and Priority Tuning.

FURTHER IMPROVEMENTS

The combination of parallel callback threads and thread
resource allocation already greatly reduces the interrupt-
to-record latency and makes better use of the computing

power of multi-core CPUs. Still, the callback system is a
general purpose facility, and other parts of the IOC
software can offload work to the callback threads, which
may affect the real-time behavior.

The callback threads or thread sets map to the three
available record priorities. Adding user-defined options to
that priority enumeration would allow drivers to define
dedicated “private” callback threads with their own
separate queue instances, that are only used by that
specific driver.

The driver could also specify the queue length to
control maximum latency and queue/cache preference,
and a special queue length could even process the records
directly from the driver thread context, eliminating all
queues and thread switches, allowing almost fully
deterministic behavior for control loops implemented as
EPICS records.

CONCLUSIONS

The implemented EPICS extensions and utilities show
that the real-time behavior of the EPICS IOC on multi-
core CPUs can be optimized by fine-tuning the real-time
properties and thread resource allocation.

Other options have been identified, that would further
extend the IOC into being an engine for deterministic fast
real-time control, eventually meeting the requirements for
applications like plasma control, while retaining the full
flexibility and versatility of the IOC and connecting such
applications to the rich tool set of the EPICS framework.

ACKNOWLEDGMENT
We would like to thank the ITER CODAC team and the

EPICS Base Developers for their cooperation, help, and
fruitful discussions.

REFERENCES
[1] Experimental Physics and Industrial Control System,

http://www.aps.anl.gov/epics.
[2] I. Molnár, “Modular Scheduler Core and Completely Fair

Scheduler [CFS]”, Linux-Kernel mailing list, 2007,
http://lwn.net/Articles/230501.

[3] M. Galbraith, “sched: automated per tty task groups”,
Linux-Kernel mailing list, 2010, http://marc.info/?l=linux-
kernel&m=128978361700898.

[4] M. Kraimer et al., “EPICS Application Developer's Guide”,
edition for EPICS Base Release 3.14.12,
http://www.aps.anl.gov/epics/base/R3-14/12-
docs/AppDevGuide.pdf.

[5] A. Barbalace et al., “Comparative Analysis of EPICS IOC
and MARTe for the Development of a Hard Real-Time
Control Application”, ICALEPCS2011, Grenoble, October
2011, WEPMN036, pp. 961-964 (2011),
http://www.JACoW.org.

[6] R. Lange, “EPICS Multi-Core Utilities” documentation,
http://epics.sf.net/mcoreutils.

[7] M. Rivers, “asynPortDriver – C++ Base Class for Asyn
Port Drivers”, Chicago, February 2009,
http://www.aps.anl.gov/epics/modules/soft/asyn/R4-
12/asynPortDriver.html

MOPPC124 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

402C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

