
REAL-TIME PROCESS CONTROL ON MULTI-CORE PROCESSORS

M. Ishii#, T. Furukawa, T. Matsumoto
JASRI/SPring-8, Hyogo, Japan

Abstract
Real-time control is essential for a low level RF and

timing system to have beam stability in an accelerator
operation, however, it is difficult to optimize priority
control of multiple processes with real-time (RT) and
time-sharing (TS) classes on a single-core processor. For
example, it is not possible to log into the operating system
if a real-time class process occupies the resource of
a single-core processor. Recently, multi-core processors
have been utilized for equipment control. We studied the
process control for multiple processes running on multi-
core processors. After several investigations, we
confirmed that a stable operating system could run under
a heavy load on multi-core processors. It is possible to
achieve a real-time control response of the order of
milliseconds in a fast control system such as an event
synchronized data acquisition system. Additionally, we
measured the response performance between client and
server processes using the MADOCA II framework, the
next-generation MADOCA. In this paper, we present
details of the tunings required for real-time process
control on multi-core processors and measurement results
of MADOCA II.

INTRODUCTION
The control systems for SPring-8 and SACLA adopt

the MADOCA framework [1]. These equipment controls
introduce the VMEbus system based on the IA
architecture Solaris 10. VME single-core CPU boards,
such as the SANRITZ SVA041, are in use. In the
MADOCA framework, a basic software scheme on a
VME CPU board consists of an equipment control
process, some processes to write polling data in memory,
and a server process to send data from the memory to a
database. Additionally, several fast feedback processes
run in fast and complex control systems such as the LLRF
system, undulator control system, and event synchronized
data acquisition system. Recent control systems have a
tendency to increase the number of processes running on
a host.

Conventionally, programs are developed with wait-to-
release CPU resources by using sleep() or the timeout
function of select(). The Solaris system clock frequency
can be set up to 1000 Hz with high resolution. To satisfy a
control interval of less than 1 millisecond, it is an easy
solution to install a busy-wait process. However a busy-
wait should not be used if it is necessary to avoid 100%
CPU occupation on a single-core processor. If a real-time
process enters an infinite loop on a single-core processor,
it becomes impossible to log into the operating system. It

is difficult to optimize priority control of multiple
processes with real-time and time-sharing classes on a
single-core processor.

Recently, a VME multi-core CPU board has come into
use for equipment control. We studied the process control
of multiple processes running on multi-core processors.

OPERATION VERIFICATION OF MULTI-
CORE PROCESSORS

We studied two models of VME multi-core CPU board:
a XVB601 (GE Intelligent Platforms), featuring the Intel
Core i7-620UE 1.06 GHz, and a VP717 (Concurrent
Technologies), featuring the Intel Core i7-620LE 2.0
GHz. Both have dual-core processors with low power
consumption, and support Intel Hyper-Threading
Technology. These VME CPU boards allow four
processors to appear to the host operating system, and the
maximum value of CPU utilization per processor is 25%.
We investigated CPU sharing and process states under
high workloads on Solaris 10. The high workload test
program was a simple infinite loop: while (1). If this
process runs on a single-core processor, the operating
system hangs. We used this test program for the operation
verification of multi-core processors.

Scheduling Class
By default, Solaris uses a time-sharing (TS) scheduling

class, however, it also offers a real-time (RT) scheduling
class. The RT scheduling class uses system priorities in a
different range from the Fair Sharing Scheduler (FSS).
Therefore, the FSS can coexist with the RT scheduling
class within the same processor. TS class processes are
controlled by the FSS. We studied the following cases.
• When a TS test program runs on four processors, the

process is running on any processor. The process is
not allocated a specific one. The CPU utilization of a
process reaches 25%.

• When four TS test programs run on four processors,
these processes are running on any processor among
the four. A process is not allocated to a specific one.
One among the four processes is placed in the run
queue. When five TS test programs run on four
processors, two of the five processes are placed in
the run queue. The CPU utilization of a process is
20%. In this situation, it is possible to log into the
operating system.

• When three RT test programs run on four processors,
these processes are running on any processor among
the four. A process is not allocated to a specific one.
The CPU utilization of a process reaches 25%. In
this situation, it is possible to log into the operating
system. When four RT test programs run, the
operating system hangs.

 __
#ishii@spring8.or.jp

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC128

Software Technology Evolution

ISBN 978-3-95450-139-7

407 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

 Processor Binding
Solaris can bind a process to a specific processor. We

also studied the following cases.
• When five TS test programs and a TS test program
bound to a processor run on four processors, the
CPU utilization of the bound process is ~14% and
the CPU utilization of the others is ~18%. Five
processes share four processors.

• When five TS test programs run on four processors
and a TS test program and an RT test program bound
to same processor run, the CPU utilization of a
bound RT process reaches 25% and the CPU
utilization of a bound TS process is 0%. The other
TS processes share the other three processors.

The non-binding TS processes can share all processors,
but a bound TS process is allocated to only a specific
processor. Therefore, under the control of FSS, a bound
process is allocated a smaller CPU resource than the other
processes. If high performance is required, the binding of
multiple processes should be done carefully.

Processor Set
Solaris can group multiple processors as a set. We

formed a processor set by grouping three processors and
studied the following cases.
• When three TS test programs bound to a processor

set run on four processors, the CPU utilization of a
process reaches 25% and the total CPU utilization
reaches 75%. When four TS test programs bound to a
processor set run on four processors, the CPU
utilization of a process reaches 25% and the total
CPU utilization reaches 75%. One among the four
processes is placed in the run queue.

• When a TS test program with three threads bound to
a processor set runs on four processors, the CPU
utilization of a process reaches 75%. When a TS test
program with four threads bound to a processor set
runs on four processors, the CPU utilization of the
process reaches 75%. One of the four threads is
placed in the run queue.

Features of Multi-core Processors
Our studies revealed the following features of multi-

core processors.
• Even if processes numbering more than the

processors are running on multi-core processors, the
operating system continues to run stably.

• It is effective to bind an RT process to a processor.
However, it is not effective to bind a TS process to a
processor.

• A process or thread can occupy only one processor.
• The priority control of processes is extremely easy to

achieve by setting a high priority process to the RT
class and binding the process to a processor.

On a single-core processor, if an RT process goes out of
control, the method to recovery the system is to shut the
power off. However, on multi-core processors, it is
possible to log into the operating system and kill the

problem process and thus, the recovery of the system is
faster.

INSTALLATION OF MULTI-CORE
PROCESSORS

At the beam commissioning stage of SACLA, the
accelerator repetition rate was 1-10 Hz, and the single-
core CPU boards were installed in all VMEbus systems
[2]. Currently, the accelerator repetition rate is 20 Hz,
however, it will go up to 60 Hz. In the LLRF control
system, two fast feedback control processes and three
basic MADOCA processes are running on a single-core
processor. One more process will be added into this
system. It is difficult to run these processes stably on a
single-core CPU board. Therefore, the VME CPU boards
are currently being replaced with multi-core CPU boards.

Beam steering magnets require fast device control. We
set the tick to 0.1 ms in Solaris running on the VME
single-core CPU board and controlled the devices using
sleep-wait. However, at the tick of 0.1 ms, Solaris became
unstable. Therefore, we installed busy-wait processes
running on VME multi-core CPU boards and set the tick
to 1 ms. The system is now stable [3]. We concluded that
a VME multi-core CPU board is suitable for fast device
control.

PERFORMANCE MEASUREMENT OF
MADOCA II

 Next-generation MADOCA (MADOCA II) was
developed in 2012 [4]. MADOCA II is based on message-
oriented control, just as MADOCA was. However,
MACDOCA II adopts the ZeroMQ socket [5] as the
protocol for internal process communication and remote
communication. MADOCA II also increases the number
of processes that may be run on a device control
computer, (generally a VME CPU board). In MADOCA,
a single Equipment Manager (EM) ran on a host. In
contract, multiple EMs for each device can be run on a
host in MADOCA II.

We measured the performance of the round trip time
(RTT) of message transmission in Solaris 10 on a VME
CPU board, VP717. Figure 1 shows the software scheme
for performance measurement. The Message Server

Figure 1: Software scheme for performance
measurement on a VME CPU board.

MOPPC128 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

408C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

(MS2) and EM are necessary components of MADOCA
II. In MADOCA II, all messages go through MS2;
therefore, the priority control of MS2 is important. A test
program (TP) requests the “current time” to the EM via
MS2 and the EM replies to the TP via MS2. The RTT is
the time that the TP sends message request and receives
the message reply. This software scheme for measurement
is the simplest that can be run on MADOCA II. We also
measured the performance in various other cases by
changing a scheduling class and a processor bind of the
MS2, EM, and TP. We set the tick to 1 ms in Solaris. Case
1 is the RTT when the MS2, EM, and TP are set to the RT
class and the MS2 is bound to a processor. Case 2 is the
RTT when the MS2, EM, and TP are set to the default TS
class. Table 1 shows the statistics of the RTT in each case.
Figure 2 shows the measured results for case 1 and Figure
3 shows the measured results for case 2. In case 1, the
standard deviation of the RTT is extremely small, and the
RTT is between 1 and 2 ms. This is good performance for
real time control requiring precise time accuracy. Case 2
is not suitable for real time control. However, over 99.8%
of the RTT are ~1 ms. It is acceptable for a control system
such as the motor control of beamline components and
data logging with the order of seconds.

Table 1: Statistics of RTT

MS2 (RT) with
binding
EM (RT)
TP (RT)

MS2 (TS)
EM (TS)
TP (TS)

Minimum 1.131 ms 1.029 ms

Maximum 1.76 ms 141.985 ms

Average 1.293 ms 1.141 ms

Median 1.286 ms 1.126 ms

Standard
deviation

0.047 0.67

SUMMARY
Multi-core processors are now being utilized for

equipment control. We investigated the process control of
multiple processes running on multi-core processors.
Even if an RT process goes out of control on multi-core
processors, the operating system continues to run stably.
A process or thread can occupy only one processor.
Additionally we measured the performance of RTT of
message transmission in the MADOCA II framework
running on multi-core processors. We determined that
RTT is between 1 and 2 ms by the adjustment of process
control. This is suitable for real time control. Multi-core
processors are an essential resource for constructing real
time control systems.

ACKNOWLEDGMENT
We would like to thank Dr. R. Tanaka, Dr. A.

Yamashita, Mr. M. Kago, and other colleagues in the
JASRI Controls and Computing Division for useful
discussions regarding MADOCA-II.

REFERENCES
[1] R. Tanaka et al., “The first operation of control

system at the SPring-8 storage ring”, Proc. of
ICALEPCS’97, Beijing, China, 1997, p 1.

[2] R. Tanaka et al., “Inauguration of the XFEL facility.
SACLA, in SPring-8”, Proc. of ICALEPCS2011,
Grenoble, France, 2011, p585.

[3] T. Otake et al., “Magnet power supply control
program developed for SACLA/SPring-8”, Proc. of
the 8th Annual Meeting of the Particle Accelerator
Society of Japan, Tsukuba, Japan, 2011, p 539.

[4] T. Matsumoto et al, “Next-Generation MADOCA
for The SPring-8 Control Framework”, Proc. of
ICALEPCS2013, San Francisco, USA, 2013, in
these proceedings.

[5] http://www.zeromq.org

Figure 3: RTT when the MS2, EM, and TP are set
to the TS class.

Figure 2: RTT When the MS2, EM, and TP are set to
the RT class and the MS2 is bound to a processor.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC128

Software Technology Evolution

ISBN 978-3-95450-139-7

409 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

