
A NEWMESSAGE-BASED DATA ACQUISITION SYSTEM FOR

ACCELERATOR CONTROL

A. Yamashita∗, M. Kago, JASRI/SPring8, Hyogo, Japan

Abstract

In SPring-8, we are constructing MADOCA II, the

next generation accelerator control framework. It will

be installed in the spring of 2014. We describe the part

of the data acquisition system of MADOCAII. The old

MADOCA data acquisition system was built on the bases

of ONC-RPC for communication between embedded pro-

cesses and data collector. We designed the new data ac-

quisition system with the long experience on MADOCA.

We employ ZeroMQmessages packed by MessagePack for

communication. We obtained a high aperformance, highly

reliable, well scalable and flexible data acquisition system.

In this paper, we will discuss requirements, design, imple-

mentation and the result of the long run test of MADOCA

II data acquisition system.

INTRODUCTION

The data logging system for the SPring-8 accelerator

complex has been operating as a part of MADOCA [1] sys-

tem. It collects all the data without selection and stores

them in the database perpetually and uniformly. It has been

serving the development and stable operation of accelera-

tors for 16 years.

In MADOCA data logging system, collector processes

periodically request to distributed embedded computers to

collect groups of data by synchronous ONC-RPC [2] pro-

tocol at fixed cycles. Its group of signals strategy reduced

number of commands to issue and made data acquisition

fast. But it requires many efforts to manage the signals.

Also it sacrifices flexibility over the data acquisition tim-

ing.

On the other hand, we also developed another My-

DAQ [3] [4] system for casual or temporary data acqui-

sition. Data acquisition processes running on embedded

computers push BSD socket stream into a server at ran-

dom time. Its one stream per one signal strategy made data

management simple while the system has no scalability at

all.

The new MADOCA II system has been developed

for next generation accelerator. For new MADOCA II,

we need a data acquisition system which has a super-

MADOCA scale and MyDAQ’s simplicity and flexibility.

Also, the next generation accelerators require a control

system to collect high density and complex data. The new

data acquisition system has to handle them with high relia-

bility.

We define the functions of the new data acquisition sys-

tem. It collects data from data source and writes them to

∗ aki@spring8.or.jp

various data consumers. The data consumers are database

and data subscribers.

DESIGN GOALS

We set the following design goals of new generation

MADOCA II data acquisition system.

• Easy to manage. Almost zero configuration is the

goal. Only the data source knows metadata, data about

signals. The metadata are packed with data. Thus,

other components need no configuration files to see

metadata.

• Data format. The data acquisition system should ac-

cept any format of data and relays to the data con-

sumer.

• Scalability. The system should be horizontally scaled

out. If the density of data acquisition gets higher, we

can handle them by adding servers. And there should

be no limit to the number of servers.

• Preserve the naming scheme of the current

MADOCA system. The MADOCA system uses

the human readable signal naming scheme like

“sr mag ps b /current adc”, it means current ADC

values of storage ring’s bending magnet power

supply. That naming scheme is well matched to key

value data store. The data acquisition system should

be built on that naming scheme.

• The system should run on major OS, Windows and

Unix like OS. And data source can be written in major

modern languages.

• Flexibility in data structure. The old MADOCA sup-

ported float and integer data type only . In addition

to the datatypes, the new system should handle data

structure like array, maps and their combinations.

• Flexibility of data acquisition timing. Every signal

data should be acquired at arbitrary timing.

• It should be reliable. Every component should be re-

dundant. No single point of failure should be in the

system.

• Two types of data consumers. One is database type,

that stores data in database and application reads data

from databases at any time. Number of databases

should not limit to one. One can add the other

database with little efforts. Another type is published

and subscribe. User application subscribes to the

server and waits data until it published. It enables

event driven programming style.

According to above requirements we design data acquisi-

tion system.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC130

Software Technology Evolution

ISBN 978-3-95450-139-7

413 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



ARCHITECTURE

The entire structure of the data acquisition system is

shown in Fig. 1 The system is built on the three-tier stan-

dard model of the accelerator control system. The data

source on embedded computers send messages to the relay

processes on the server computers via Ethernet networks.

The relay processes relay messages to the writing processes

which convert messages to database formats and write them

to the databases. The relay servers also publish messages to

other processes which subscribe to messages by arbitrary

keywords. The messaging is asynchronous, one-way and

Figure 1: Data acquisition system. Solid line is Push/Pull

pattern of ZeroMQ. Curve is Publish/Subscribe pattern

of ZeroMQ. Broken line and dotted line is API of each

databases.

no call back, that enables fast messaging. We had many

troubles with synchronous ONL-RPC in which a message

sender sends a message and waits for a reply. If the reply

delays, the sender cannot send the next message. Asyn-

chronous messaging avoids such a trouble.

In the original MADOCA system, both data acquisition

process and collector process have their own metadata. It

sometimes got confused by inconsistent metadata between

them. In the new system, only the data source process have

metadata. And they are packed with data into a message.

Therefore, no inconsistent situation can be happened.

We put multiple relay serves for load balancing and high

availability. Data source process sends a message to relay

server using ZeroMQ’s [5] Push/Pull pattern in the round

robin way for load balancing and redundancy. If one relay

process fails, the ZeroMQ library detects it and the next

message will never send to the failed processes until it re-

covers.

MESSAGING

Messaging Library

We choose ZeroMQ as the messaging library. In this

system, the ZeroMQ serves not only the messages between

network connected processes but also the messages be-

tween threads inside a process.

ZeroMQ is an easy to use asynchronous and multi-

patterned messaging library which runs on multi-OS and

multi-language environment.

Serialization Library

The MessagePack [6] is a library which serializes not

only simple data but also complex data structures into bi-

nary strings. It is like binary-JSON and generate fast, com-

pact and self described data. It needs no IDL (Interface De-

scription Language) like ONL-RPC. The library has been

implemented in over 16 major computer languages and ma-

jor operating systems. String packed by MessagePack can

be exchange between those languages and operating sys-

tems.

Structure of Message

The format of the messaging is shown Fig. 2 We split

a message into three parts and send them by ZeroMQ’s

multi-part message feature.

Figure 2: Structure of a message. The first part is keyword.

The second part is metadata. Map structure contains times-

tamp in ns. The third part is data itself. Second and third

pard are serialized by MessagePack.

The first part is the keyword part which is used for keys

for the key value data store and key for publishing. In

MADOCA system, every signal is uniquely named and the

systems are built on the naming system. We add a two letter

keyword at the head of signal names. The two letter key-

word indicates the kind of message. For example, “LG”

means the message contains log data and “AL” means the

message has alarm data. We also add a colon (:) at the tail

of the signal name.

The second part of the message is metadata which is data

for describing data. A metadata format has a map data

structure which has set of key and value. That has only

one keyword ’tm’ describing timestamp in long int format

at the current time. The map data structure will be expand-

able to add other metadata in the future. MessagePack li-

brary serializes the map data structure into a binary string.

The acquired data from the device are also serialized into

a string by MessagePack. And the string forms the third

part of the message. MessagePack has so flexible and rich

feature that serializes not only single value but also com-

plex data structures including lists, map and their combina-

tion.

Using three part messages the applications uses the first

messages as a key of Publish/Subscribe and key of key-

value stores. For example, the process which writes to

Apache Cassandra [7] uses the first part as keyspace key

and the timestamp in the second part as column key. If

MOPPC130 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

414C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution



metadata and data are not separated, applications have to

unpack both of them. It may consume computing re-

sources, especially if the data part has complex data struc-

ture.

IMPLEMENTATION

Data Source

A data source generates messages and push them into

the relay processes. We developed a polling process that

runs on embedded computers, collect data from devices

and send messages to the relay servers. We provide a

messaging library for them. This process is same as old

MADOCA system. But the new system has great degree

of freedom, because only the data source has metadata in

the new system. We developed a filter program that ac-

cepts the standard output of the application and convert to

messages. A user who wants to store data writes just an

application which write data by printf function. The filter

program converts them to messages and send them. It can

be applied to application’s log data store and can replace

logging system like syslog.

Relay Server

The relay servers accept messages from data sources

by ZeroMQ’s Push/Pull pattern and relays them to writ-

ers by same patterns. Also the relay servers publish mes-

sages to the subscribers by Publish/ Subscribe pattern of

ZeroMQ. ZeroMQ has a function which relays Push/Pull

message. We did not use the function because we not only

Push/Pull but also also publish the message. Published

message may use event-based applications which cannot

be implemented with MADOCA. Event-based application

with Publish/Subscribe functions may enable stream pro-

cessing without storing data.

Data sources send messages to multiple servers in round

robin way that enhances the scalability and reliability. The

multiple relay server may cause broken the order of the

message. The older messages may come after new mes-

sages. We observed no order breaking at long run test but it

could happen with high density data. If message ordering

is essential, applications have to care with timestamp in the

message.

Writer

The writer receives messages, process them and send to

the database using the individual API. One relay server

sends messages to one or more writers and no cross con-

nections between relays and writers i.e one writer received

from one relay servers. The ZeroMQ’s push pull pattern

allows cross connection, but it often breaks message order.

In the writer, the receiving thread and the writing threads

are separated Fig. 3. The receiving thread sends messages

using in-process publish and subscribe pattern. Currently

two writing threads write data to the databases. One of

the databases is Redis [8] for real-time data cache and an-

other is Apache Cassandra for perpetual data storage. It can

be easy to add another thread which writes data to another

database. And no modification is needed for other threads.

The Apache Cassandra gets higher performance by higher

number of writing processes [9]. Six node Cassandra clus-

ter is never saturated by 100 writer clients. So many writer

processes utilize Cassandra’s writing performance.

Figure 3: Inner structure of the writer. Receiving thread re-

ceives messages by Push/Pull pattern of ZeroMQ via net-

work. It publishes messages by inter-thread communica-

tion of ZeroMQ.

Security

Currently no security mechanism is implemented. We

assume this system is running on the network protected by

firewalls and every computer connected to the network are

well trusted. There is no authentication nor encryption for

now.

Configuration

Configuration file manages information about servers.

Hostnames ports and database information name of

keyspace are written in one JSON [10] file. The file is

shredded by NFS mounted filesystem.

TEST

We performed a long term test run and measured its

performance. The parameter of the test is shown in Ta-

ble 1 The names of signals are taken from real 47,397

SACLA [11] [12] signals. Simulated data sources gener-

ated messages in 1Hz. Three relay serves and 24 writer

processes wrote to six node Cassandra cluster and two Re-

dis servers. The speed of writes are over six times higher

than current SPring-8 writing speed. We continue writing

tests for 24x7 in three months. We examined Cassandra

data and no data are dropped. We also examined Redis

data and no time reversal has happened in this test term.

The relay process itself can handle over 180,000 messages

per second.

We examined behavior in the process fails. When one

relay process failed, the writer process sent messages to

the other relay process after the buffer was filled. After

the relay process brings back the messages in the buffer

sent to the relay process. Because the size of the buffer

was adjustable, we were able to minimize the delay of the

message.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC130

Software Technology Evolution

ISBN 978-3-95450-139-7

415 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Table 1: Test Parameters

CPU Intel Xeon X3470

2.93GHz 4Core

OS CentOS 6.2 64bit

Number of data source processes 240

Number of signals 47397

Writing speed per signal 1Hz

Average length of keyword 38.7 bytes

Length of metadata 13 bytes

Length of data 9 bytes

Number of relay server 3

Number of writer process/relay server 8

We could not perform scalability test adding signals and

servers, because our computer resource was limited. We

expect the network will be the bottleneck. Until the net-

work is saturated, the system will scale.

CONCLUSION

We constructed easy configured, reliable, scalable and

high performance data acquisition system. This systemwill

acquire and store data of SPring-8 during the run in the

spring 2014. For long run test, the new system coexist with

the old system. We expect the new system will serve the

new generation accelerator like old MADOCA system has

been serving SPring-8 for a long time.

REFERENCES

[1] R.Tanaka, et al., “The first operation of control system at the

SPring-8 storage ring”, Proceedings of ICALEPCS 1997,

Beijing, China, (1997) p.1.

[2] A.D. Birrell, B.J.Nelson, “Implementing remote procedure

calls”. ACM Transactions on Computer Systems 2: 39.

(1984).

[3] A.Yamashita and T.Ohata “MyDAQ, a Simple Data logging

and Display Server”, Proc. of PCaPAC’05, Hayama, Japan,

(2005).

[4] T.Hirono, et al., “Development of Data Logging and Dis-

play System, MyDAQ2”, Proc. of PCaPAC’07, Ljubljana,

Slovenia, (2007).

[5] Pieter Hintjens, “Zeromq Messaging for Many Applica-

tions”,O’Reilly Media,(2013).

[6] Sadayuki Furuhashi, Master Thesis, University of Tsukuba,

Japan, (2012).

[7] http://cassandra.apache.org/

[8] http://redis.io

[9] M.Kago, et al., “Development of a Scalable and Flex-

ible Data Logging System Using NoSQL Databases”,

TUPPC012, proceedings of ICALEPCS 2013.

[10] D. Crockford, “The application/json Media Type for

JavaScript Object Notation (JSON)”, RFC 4627, (2006)

http://tools.ietf.org/html/rfc4627

[11] T. Ishikawa, et al., “A Compact X-ray Free-electron Laser

Emitting in the Sub-angstrom Region”, Nature Photonics 6,

p. 540-544 (2012).

[12] R. Tanaka, et al., “Inauguration of the XFEL Facility,

SACLA, in SPring-8”, Proceedings of ICALEPCS2011,

Grenoble, France (2011).

MOPPC130 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

416C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution


