
A FRAMEWORK FOR OFF-LINE VERIFICATION OF BEAM
INSTRUMENTATION SYSTEMS AT CERN

S. Jackson, C. Zamantzas, C. Roderick, CERN, Geneva, Switzerland

Abstract
Many beam instrumentation systems require checks

to confirm their beam readiness, detect any deterioration
in performance and to identify physical problems or
anomalies. Such tests have already been developed for
several LHC instruments using the LHC sequencer [1],
but the scope of this framework doesn't extend to all
systems; notably absent in the pre-LHC injector chain.
Furthermore, the operator-centric nature of the LHC
sequencer means that sequencer tasks aren't accessible
by hardware and software experts who are required to
execute similar tests on a regular basis. As a
consequence, ad-hoc solutions involving code sharing
and in extreme cases code duplication have evolved to
satisfy the various use-cases. In terms of long term
maintenance, this is undesirable due to the often short-
term nature of developers at CERN alongside the
importance of the uninterrupted stability of CERN's
accelerators. This paper will outline the first results of
an investigation into the existing analysis software, and
provide proposals for the future of such software.

INTRODUCTION
Large quantities of data were produced by LHC's

various instrumentation systems during the machine's
more than three years of operation. Much of this data
was logged and made available for offline observation
via rudimentary data extraction tools such as the Timber
web interface, but early in the LHC's operation it
became clear that detailed analysis of this data would be
necessary to detect equipment deterioration and data
quality issues. It soon became apparent that examining
the huge quantities of raw data manually was
impossible, and ad-hoc analysis software began
appearing within the BI (Beam Instrumentation) group.

With no standard framework or tools in place, this
analysis software was created on a case-by-case basis,
with most of the analysis tools being written by CERN
students. Many of the students have since left CERN,
leaving a legacy of undocumented, yet vital scripts
which will be required to be operational when the LHC
restarts. During the LHC shut-down, a project has been
set up to analyse the contents of these scripts and to
propose a framework into which the scripts can be
managed. The scope of this framework should also be
flexible enough to allow analysis scripts to be made for
other LHC instrumentation systems as well as for
instrumentation systems in the LHC injector chain.

This paper will detail the results of an investigation of
the current analysis software which has been running
prior to the LHC shut-down. It will highlight the
strengths and weaknesses of the current software and

conclude with some recommendations for the migration
of existing and future analysis software.

ANALYSIS DATA SOURCES
Most of the existing software is driven by data

extracted from the LHC measurement database. Direct
access to this Oracle database is forbidden, and all data
extraction must be performed via a Java API supplied
by the database team. This allows the imposition of
'fair-use' policies and limits the possibility of runaway
clients taking down the database, but it also restricts
which languages can be used in the analysis.

The data analysed by the current software is generally
machine triggered data. There are however other
sources of data generated by Java applications written
for equipment experts’ use when analysing the state of
their equipment. These so called 'expert applications'
read data from instrumentation on-demand and often
create raw data files for immediate or later analysis.
One such application, for the readout of BLM (Beam
Loss Measurement) modulation tests, not only creates
these files when an expert presses a button in the GUI
(Graphical User Interface), but the analysis code is
written in such a way that the readout-and-dump-to-file
functionality can also be triggered by the LHC
sequencer. In this case, a set of data files is generated
by the sequencer before each LHC fill – files which
then form another data source for analysis.

CHOICE OF ANALYSIS LANGUAGE

The three officially sanctioned development
languages in CERN's Beams department are C, C++ and
Java. C and C++ are used for most of the accelerators'
real-time software, and Java can be found
predominantly in the GUIs and middle tiers. Given that
the API of the main data source (the measurement
database) is in Java, it would seem natural that Java
would be used in the analysis software as well.
However, analysts decided against the use of Java or
C++ for the following reasons:

 The steep learning curve for object-oriented
languages such as Java and C++ (many analysts
didn’t come from a computing background).

 Although the scripts were well designed regarding
their purpose and function, little or no software
design was made before the analysis scripts where
written. An edit and run scripting language was
preferred as it allowed rapid prototyping whereas
the design, implement, compile, deploy and run
approach of Java applications is very heavy when
you are making frequent changes.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC139

Software Technology Evolution

ISBN 978-3-95450-139-7

435 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

CERN also has a mature data analysis framework,
ROOT, which is used extensively for analysis in the
LHC experiments. This framework provides many C++
libraries for common data processing tasks, but the use
of C++ as an analysis language had already been ruled
out due its complexity. ROOT also provides a scripting
language which satisfied the rapid prototyping
requirements, but interfacing this with the Java API for
accessing the database isn't trivial. The ROOT project
however has a parallel project, PyROOT, which allows
the ROOT libraries to be accessed by the Python
scripting language. Also, the analysts found a way in
Python to allow integration of the Java API which
meant that their Python scripts could access both the
data sources as well as the rich code-base of ROOT
from a rapid scripting language.

It is clear why Python was chosen as the preferred
language. However, the responsibility for the analysis
environment is moving to the software section of the
Beam Instrumentation group which means that there is a
strong argument to move the new framework to Java
(the department’s standard development platform for
data analysis), insisting that the lack of object-oriented
programming expertise and lack of software design are
addressed by basic training. Even with this training
however, significant effort would be required to write or
source Java packages which will replicate the
algorithms provided by PyROOT and NumPy (a
numerical package used in existing Python scripts).

EXECUTION AND MONITORING OF
SCRIPTS

The existing Python scripts are executed from an
SLC6 (Scientific Linux CERN) based machine at
staggered intervals to avoid excessive instantaneous
load on the database. The standard UNIX cron daemon
is used to schedule and execute the scripts early in the
morning to minimize interference with other users.
Each of the Python scripts has an accompanying shell
script which sources a common environment (setting
Java class paths for the data extraction, setting paths for
ROOT modules and Python distributions, etc.), then
executes the script piping any output from stdout or
stderr to a per-script log file.

Although not critical for machine operations, it is
considered imperative that the scripts always run. Some
of the analysis scripts act as an early warning, signalling
an imminent problem, or the approaching of some
predefined limit of the hardware. The cron mechanism
ensures that the tasks are always executed (presuming
the hosting machine is running), but on several
occasions during the last LHC run the scripts blocked
during their execution. For scripts that generate a daily
report, it is likely that somebody will notice the
problem, but for other scripts that only report on
problems, it was sometimes days before the blocked
script was noticed. In order to address this problem,
two main ideas have been proposed:

 An additional monitoring cron task should be
executed at a time when all other tasks should not
be running. If this task sees a blocked process, it
will send an email to signal the problem.

 As all the scripts output is sent to a log file, the
final line in the file should contain a predefined
message and time-stamp. A monitoring task can
ensure that this line is present, confirming the task
didn't exit prematurely.

TYPICAL ANALYSIS

Currently, most of the scripts analyse measurement,
configuration and status data from the LHC's BLM
system. It is beyond the scope of this paper to detail all
of these scripts, but the following three scripts highlight
the current main use-cases.

ThresholdChanges Script

BLM thresholds (logged at 1Hz intervals in the
measurement database) are retrieved between two dates.
A comparison is performed on a per monitor basis
resulting in a report highlighting any changes (grouped
by the monitor's family). A detailed PDF with plots and
summary tables (showing thresholds at the two dates for
the highlighted energy levels as well as the ratio of all
the 12X32 thresholds per BLM) is then emailed to a list
of people on a daily basis. This is an example of a
script which is alerting the equipment expert when
something critical (in this case the thresholds) has been
changed and can highlight a setting corruption or even
an unauthorized change, see Fig. 1.

CardTemperature Script

This analysis script is intended to give a full overview
of status information without limiting it to anomalous
data. The script produces daily graphs showing the
temperature of all the beam loss acquisition cards. At a
glance, the viewer of the graph can quickly see a trend
indicating a potential hardware problem or even a
cooling ventilation failure before the problem becomes
critical.

Figure 1: An example image showing BLM cards in 8
of LHC’s surface buildings, generated using matplotlib.

MOPPC139 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

436C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

HVStatus Script

As well as analysing the status of the high voltage
measurements, this script also reports on unexpected
measurements from the monitors where the loss was
zero. This could highlight a serious failure somewhere
in the transmission of the data, or a problem in the high
voltage supply for the affected monitor. Without
analysing all the measurement data, a glitch in the
system could be missed.

Other Scripts

The analysis scripts aren't only limited to monitoring
data from the BLM system. Scripts have also been
made for producing regular measurement graphs for
BGI (Beam Gas Ionization) monitors, and tabular
reports for the LHC wire-scanners. In the case of the
wire-scanners, analysis of how many scans have been
made, along with acquisition error rates are used to help
the hardware experts predict when the wires will have to
be replaced due to their degradation by the beam.

EMAIL VERSUS WEBSITE REPORT
DISTRIBUTION

The current Python scripts send their results via an
email, sometimes with PNG or PDF attachments. This
system works well when the report contains an
important indication of potential failure, but can be
considered intrusive if the report is for informative
purposes. Furthermore, a list of email recipients has to
be defined, and people who have an interest to see the
reports weekly or monthly can't do so without being on
this list (and thus subjected to daily emails). The
proposed solution is to firstly classify the reports as
either informative, or action reports. Then, we can
publish analysis results considered as informative via a
public website, and publish results which potentially
require some action via the current email/attachment
approach. See Fig. 2. Public publishing of data is widely
used for other operational systems, in the form of a
dashboard. This dashboard approach can be extended to
handle historical data, thus providing all visitors access
to all current and previous reports if and when required.

Figure 2: Proposed delivery of reports.

RESTRUCTURING / CREATION OF A
DEVELOPMENT FRAMEWORK

The existing analysis scripts don't follow any
framework, and little effort has been made to
modularize common code to avoid code-duplication.
For example, the code used to wrap the access to the
measurement database’s Java API into a Python module
has been written once, and then duplicated for each of
the modules which use it with very minor changes.
Examination of the code immediately highlights that
most of the code for initializing the connection to the
database can easily be extracted to a common module.
As well as code duplication, there are numerous
examples of difficult to understand code, such as the
creation of LaTeX files using hundreds of lines of code
which simply append line after line of text to a file.
While modularizing this kind of code would add little or
no value to the execution of the code itself, it would
certainly help in the long term readability and
maintenance of the code.

Some effort has been made however to separate
configuration within the scripts. Many scripts have an
accompanying file which defines anything deemed to be
configurable such as email recipients, start and stop
times for data extraction, and other script-specific
parameters. Presently, any modification of these
configuration files must be done by hand in a text editor,
but it has been requested that any new proposed
framework should define a common format for these
files along with accompanying graphical user interfaces
to edit their contents.

The outcome of an analysis of the existing scripts
indicated that any new framework would have to
provide the following functionality to allow the existing
scripts to be ported.

 A single module to access the database. While
some custom code might be needed to access
analysis specific data, most of the code for
connecting to the database and collecting data can
be modularised.

 Production of reports which contain text and tables.
This is currently achieved by producing
intermediate LaTeX files passed through the
pdflatex UNIX command to produce PDF files.
This should be abstracted to hide the
implementation details, so that the framework can
ultimately produce the reports as PDF files, web
pages, rows in a database, etc.

 Production of graphs. Graphs are created using the
matplotlib Python library. The graphs are exported
to image files (PNG) and sent as attachments to
email recipients or embedded in LaTex scripts. If
possible, the proposed framework should also
provide an abstracted API to hide the
implementation details, see Fig. 3.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC139

Software Technology Evolution

ISBN 978-3-95450-139-7

437 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 3: Proposed APIs (not all detail shown).

AN ALTERNATIVE MEANS TO
ANALYSE

During LHC's long shut-down, the Beams Controls
group has launched an initiative to facilitate data
analysis. Key objectives include being able to perform
analysis as close to the relevant data sources as possible,
and being able to store the analysis results using the
Accelerator Logging Service [2]. Concerning data
analysis - the current idea is to have a means to describe
the analysis to be performed using a DSL (Domain
Specific Language), with the option to schedule the
analysis based on time or beam related events, and
describe how to persist the results for subsequent
access. This would mean that instead of performing the
analysis in Python, the analysis could be described and
executed for example inside the Logging Service Oracle
database using PL/SQL or Oracle Enterprise R. Thanks
to the DSL, the actual implementation details would be
hidden from the end user.

The aforementioned initiative aims to allow analysis
of data from other sources than just the Logging
Service, such as the LHC Post Mortem system, and the
LSA Settings database. It is clear that this could be an
interesting alternative means to perform analysis, and
there will be an obvious benefit from using the
standardized Logging Service interface to store analysis
results in addition to (or even in place of) the current
reports dispatched by email.

CONCLUSION AND OUTLOOK
There are still many decisions to be made for the

future analysis framework, some of which will depend
on the future roadmap of the Accelerator Logging
Service. In the meantime, new and existing scripts
should be categorized as either informative (publishing
public results on internal CERN websites), action
(generating reports when problems are detected and
sending the reports directly to interested recipients), or
as both informative and action.

There is a strong case to migrate away from Python to
Java, but further analysis needs to be done to ensure that
Java can provide an equivalent set of libraries as is
currently provided in PyROOT, NumPy and matplotlib.
If a decision is made to keep the framework in Python,
efforts must be made to remove code duplication from
the existing scripts and impose APIs to abstract the
generation of tabular and graph reports. Once the new
initiative proposed by the Controls group takes shape,
many existing and future scripts should be migrated to
this new framework as it makes sense to have the
analysis as close to the data source as possible. This
proposed Controls framework however will only cover
scripts which are sourcing data from the databases and
LHC Post Mortem system.

A standard file format for script configuration will be
devised, meaning graphical user interfaces can be made
to edit and view scripts' parameters. Equipment experts
can then change the behaviour of the analysis scripts
without touching the source code. Issues arising from
the malfunctioning of analysis scripts should be
addressed by an additional cron task which periodically
checks for hanging processes and monitors the log files
from scripts.

ACKNOWLEDGMENTS

The authors would like to thank the Beam Loss
section for their help in understanding the many scripts
which formed the basis for this analysis. Also, the
insights into the future initiatives proposed by the
Beams Controls group regarding the use of alternative
techniques like DSL have highlighted that in some
cases, the future of some data driven analysis may be
better placed in the database itself rather than in external
scripts.

REFERENCES
[1] R. Alemany-Fernandez et al, “The LHC Sequencer”,

ICALEPCS’11.

[2] C. Roderick et al., “The LHC Logging Service:

Handling Terabytes of On-line Data”, ICALEPCS’09.

MOPPC139 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

438C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

