
CHANNEL ACCESS IN ERLANG
Dennis J. Nicklaus. Fermilab, Batavia, IL 60510, USA

Abstract
We have developed an Erlang language implementation

of the Channel Access protocol. Included are low-level
functions for encoding and decoding Channel Access
protocol network packets as well as higher level functions
for monitoring or setting EPICS process variables. This
provides access to EPICS process variables for the
Fermilab Acnet control system via our Erlang-based
front-end architecture without having to interface to
C/C++ programs and libraries. Erlang is a functional
programming language originally developed for real-time
telecommunications applications. Its network
programming features and list management functions
make it particularly well-suited for the task of managing
multiple Channel Access circuits and PV monitors.

INTRODUCTION
The Fermilab main accelerator chain, and most other

on-site beamlines such as NML/ASTA are controlled with
the Fermilab Acnet control system. The transport
protocol used by this system is also called Acnet.
However, we have occasionally had the need to integrate
sub-systems which use the EPICS control system, such as
for individual instrumentation packages, and we envision
the possibility of doing this more in the future to
accommodate collaborators who have developed in
EPICS. Furthermore, for the NO A neutrino experiment,
the detector control system is a mix of EPICS and Acnet.

EPICS uses the Channel Access (CA) protocol [1],
primarily a TCP/IP socket based protocol, but including
some UDP parts, such as for PV search beacons

We recently introduced ACSys/FE [2], a new Acnet
front-end framework, written in the Erlang programming
language. This front-end framework supports a variety of
network-based device drivers, and we needed it to also
support the EPICS CA protocol.

DEVELOPMENT
There are C-language libraries implementing the CA

protocol, and these have been widely used. ACSys/FE has
a standard mechanism to incorporate C/C++ code by
communicating with a C++ -based executable using
Erlang’s standard interface to external C/C++ code. Our
first implementation which enabled reading and setting
EPICS PVs through Acnet used this standard C-language
CA library. While this was functional, the extra step of
converting from Erlang to C introduces inefficiencies and
makes it more difficult to make everything from the C
side available in the Erlang device drivers. In addition,
using the C libraries also makes moving the front-end
across other platforms slightly more troublesome. The
CA C code is quite portable, but can require recompiling
when moving to slightly different platforms, whereas
compiled Erlang byte code is fully portable without

recompiling on the target. For the above reasons, we
implemented the CA protocol in pure Erlang, with no C
code involved, and starting from the raw protocol
documentation.

It should be noted that we only implement CA client
functionality in Erlang since we have not yet needed to
make our own CA server (IOC).

BACKGROUND
Channel Access

The CA protocol uses a combination of UDP and TCP
network protocols. UDP is used for beacons, such as the
search command which queries the network for the server
hosting a particular PV, or for CA servers to announce
that they are up. A TCP socket is established between the
client and a particular server for commands directly to
that server. CA uses the term “virtual circuit” to describe
the one TCP connection that is made between a client and
server for all the PVs from that server. All CA messages
have a 16 byte header followed by a variable-sized
payload. The first 16 bits of the packet header is a
command indicator and the second 16 bits of the header
indicates the payload size.

Repetitive CA readings are through monitors. Monitors
are set up as a channel to the IOC server and the IOC
sends updated readings over this channel as they become
available.

Erlang Features
Erlang provides high level functions for network

programming such as open and send for UDP and
connect, send, and close for TCP. We’ve found that
network programming with Erlang is much easier than in
C because more of the details are hidden from the casual
programmer.

A key feature of Erlang is its innate support of multiple
processes and message passing between them. A
common process implementation is the server loop, where
the process is in an infinite recursive loop, always waiting
on an incoming message, responding to that message,
then calling itself to return to waiting on the next
message. The server loop may have a state variable
which is passed along with each recursive call of itself,
possibly with modification as a result of the message
response. This usage is so common in Erlang that the
language has a standard gen_server behaviour which
makes it easier for a programmer to implement it.

IMPLEMENTATION
Our Erlang implementation of CA is built around four

levels of these server loops: the device driver, a manager
of virtual circuits, the virtual circuit server, and a small
loop for handling the TCP socket.

MOPPC150 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

462C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

Erlang CA Device Driver
The device driver is the ACSys framework’s boilerplate

technique for connecting a particular device to the Acnet
control system. The driver plugs into the framework, and
provides reading and setting functions for accessing the
assorted attributes of a device. By implementing a
framework device driver, the programmer doesn’t need to
know any details of the Acnet binary protocols. The CA
device driver retrieves and manages information such as
the mapping from Acnet device to Epics PV name.

Virtual Circuit Manager
This server is a middleman between the Acnet device

driver and the CA communications of the virtual circuits.
It cache’s IOC servers found for PVs and keeps track of
mappings between IOC servers (IP addresses) and the
Erlang virtual circuit process managing that server and
the mapping between individual PV read requests and the
circuit process. It also manages new PV search requests
and either makes the connection to a responding server or
declares the PV unfound after a timeout.

The Virtual Circuit
The core of the CA communications is through the

virtual circuit process. This process manages the simple
process which reads from the TCP socket. It implements
the requests from the device driver to start CA monitors
or make settings.

The virtual circuit process has to maintain an extensive
state in order to remember which monitors are underway
and which monitor is connected to which Acnet reading
request process. (In the ACSys framework, an individual
Acnet reading request can contain an arbitrary number of
devices to be read all at the same frequency. A separate
Erlang process is spawned off to handle each request.)
Additional state machine information is required when a
new monitor is started because establishing a monitor
channel requires more than just one command-reply
message pair. Settings similarly require opening a new
channel to the server, but then closing it once the setting
is complete.

The virtual circuit server has to manage all the
subscriptions (monitors) over one particular CA virtual
circuit. It also has to retain sufficient information so that
if the TCP socket closes (e.g. if the IOC is rebooted), it
can notify all of the current reading requests of this fact,
as well as notifying the virtual circuit manager.

TCP Socket Handler
This is a very simple looping function which constantly

waits on new messages from the TCP socket connected to
the IOC. It simply sends a message to its controlling
virtual circuit process every time it reads a message from
the socket. If it detects the socket closing, this loop
simply exits. That exit is noticed by the controlling virtual
circuit and a new TCP connection can be made. The
details of Erlang message passing and the TCP
communications made it simpler to have this separate

process perform the socket reading rather than the
controlling virtual circuit.

Message Binary Encoding
At the very bottom level of our CA implementation are

a set of functions which encode specific CA messages
into Erlang binaries. We have implemented
parameterized functions like encode_clear_channel,
encode_event_add, encode_echo, … for the messages at
the lowest level of the CA protocol. These functions
produce the binary packets which are sent over the CA
communication sockets.

FUTURE PLANS AND SHARING
Much of this Erlang implementation of CA is tied to

our ACSys framework. However, many useful pieces are
not and can be used or tested without any Acnet
connection or knowledge. In particular, lower level
functions, such as those which encode specific CA
messages into Erlang binaries ready to transmit to the
IOC would be useful for other facilities. Currently, we
only have implemented certain aspects of CA, namely
monitor values and settings. We have not yet had a need
to monitor EPICS alarms via CA, but it would be easily
added. Our API and documentation would need
improvement to be more globally useful, and we are open
to suggestions as to what is needed. We only implement
CA as a client library, and have no plan to create an
Erlang CA server.

SUMMARY
We have implemented significant parts of the Channel

Access protocol in pure Erlang. Our software provides
client access to CA servers and makes EPICS PVs
available to the Acnet control system. We have been
using this implementation operationally at Fermilab and
at its NO A Far Detector in northern Minnesota and are
pleased with its performance.

REFERENCES
[1] Žagar, Klemen et al, Channel Access Protocol

Specification. Ljubljana, Slovenia (2003-2008).
http://epics.cosylab.com/cosyjava/JCA-
Common/Documentation/CAproto.html

[2] Nicklaus, D. et al, “An Erlang-Based Front End
Framework for Accelerator Controls,” The 13th
International Conference on Accelerator and Large
Experimental Physics Control Systems (ICALPECS),
Grenoble, France (2011).

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC150

Software Technology Evolution

ISBN 978-3-95450-139-7

463 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

