
ACCELERATOR LATTICE AND MODEL SERVICES* 

P. Chu#, MSU, East Lansing, MI 48824, USA 
H. Lv, F. Guo, C. Wang, Z. Zhao, IHEP, Beijing, China 

G. Shen, BNL, Upton, NY 11973, USA

Abstract 
Physics model based beam tuning applications are 

essential for complex accelerators. Traditionally, such 
applications acquire lattice data directly from a persistent 
data source and then carry out model computation within 
the applications.  However, this approach often suffers 
from poor performance and modelling tool limitation.   A 
better architecture is to offload heavy database query and 
model computation from the application instances.  A 
database has been designed for hosting lattice and physics 
modelling data while a set of web based services then 
provide lattice and model data for the beam tuning 
applications to consume.  Preliminary lattice and model 
services are based on standard J2EE Glassfish platform 
with MySQL database as backend data storage.  Such 
lattice and model services can greatly improve the 
performance and reliability of physics applications. 

INTRODUCTION 
Most beam tuning applications are based on beam 

simulations; therefore, it is essential for these applications 
to get the simulation data.  It is straightforward to embed 
beam simulation operation within the applications while 
during prototyping stage.  However, online beam 
simulation typically requires heavy computing and other 
supporting utilities such as lattice settings from database 
and real-time data from control systems.  As the program 
development progressed with more features, its 
complexity level can be dramatically increased.  On the 
other hand, the same model simulation result may be 
applied to multiple application instances or even across 
different applications.  

To simplify the application codes and to increase data 
reusability, Service-Oriented Architecture (SOA) is 
introduced.  With lattice and model services providing 
needed data as opposed to the application carrying out the 
computation, applications as clients can consume the data 
and perform their functionalities more efficiently.  
Furthermore, lattice and model services shield clients 
from various data sources such as multiple databases or 
other services.  An existing model server example is 
AIDA [1] implemented at SLAC which uses CORBA 
(Common Object Request Broker Architecture) 
technology.   

Additionally, standardized data structure provides the 
possibility of modelling tool independent Application 
Programming Interface (API) for applications, i.e. an 
application can easily switch among various modelling 

tools without changing its code.  The architecture for 
accelerator model service can also be extended to 
beamline instrumentation modelling for an integrated 
start-to-end simulation platform. 

APPLICATION ARCHITECTURE 
Typical applications are either desktop-based or web-

based.  The application architecture should be compatible 
to both types of applications.  As shown in Fig.1, the 
application architecture diagram is composed by three 
parts: database, business layer, and client applications.  
The database is a general data storage container for lattice 
and model related data; the business layer provides 
computing power for beam simulation or any other 
needed computation; and the client applications provide 
user interface with minimal computation. 

 

Figure 1: Lattice and Model Service architecture diagram. 

Database 
A MySQL based database was designed to hold lattice 

and model data for most accelerators [2].  This database is 
part of the standardization effort to accommodate various 
modeling tools, as well as API between database and data 
services.  The technology for mapping Java objects to 
relational database is through Java Persistence API (JPA).  
This lattice and model database is part of overall 
accelerator database collaboration [3]. 

Business Layer 
The business layer in the application architecture 

contains the business logic, interface between the service 
and the database, the interface between the service and 
client applications, and a running engine to provide either 
on-demand or periodic updating data services.    Also, any 

 ___________________________________________  

*Work supported by the U.S. Department of Energy Office of Science 
under Cooperative Agreement DE-SC0000661 and China Spallation 
Neutron Source Project. 
#chu@frib.msu.edu                

MOPPC152 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

464C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution



computation shared among applications such as beam 
simulation is handled in the business layer.  For the 
Lattice and Model Service, lattice and model data are 
typically saved in a relational database; however, for 
performance reason, it is possible to run an inline beam 
simulation within the service’s memory or to acquire the 
data from another model data provider.  It is totally 
transparent to the client applications where the data 
actually come from.  In order to satisfy popular web 
service requirements, the Java classes are following the 
Java Bean standards.  Details for each component are 
described below. 

Database Access 
To facilitate database access in programmatic way, a set 

of Java entity classes for object-relational mapping 
(ORM) are generated following Enterprise Java Bean 
(EJB) standards.  These EJB classes provide base APIs 
for database accessing.  Database query through these JPA 
classes is much simpler than direct SQL with JDBC (Java 
Database Connectivity) API.  For very few complicated 
database queries and batch insert, however, direct SQL 
may be used.  Each database table has a corresponding 
entity class as direct mapping. 

On top of the entity class set, there are two ways for 
serving up data to client applications: one is through data 
API and the other is through REST (Representational 
State Transfer) service API.   Unfortunately, the data API 
and REST are using different transaction management, 
“Resource Local” and JTA (Java Transaction API), 
respectively, which are not quite compatible.  In order to 
reuse the code as much as possible, commonly shared by 
the two sets of APIs are implemented in the Base API box 
shown in Fig. 1.  Note that desktop applications can 
receive services from either data API or REST API; 
however, web applications can only communicate the 
service provider via REST API.  More details for these 
two types of APIs are described below. 

Data API 
Data API is in the form of traditional programming 

language API which provides convenient access to the 
database.  Applications can call the data API directly 
without any running service required.  These data APIs 
are predefined database queries to facilitate application 
programming.  With these APIs, physicists can easily 
program physics applications with the data saved in the 
database.  An example for data API is 
getElementByName(“an_element_name”) which returns 
all the element related properties stored in the database as 
a Java object.  Another example for data API can be seen 
as setElementProperty(“an_element_name”, 
“property_category”, “property_name”, “data_type”, 
property_value) which sets an element’s property in the 
database.  The majority of the data APIs are derived from 
the JPA entity classes while the remaining few data APIs 
are written in direct queries.  

REST Service API 
There are two main stream service technologies, REST 

based and SOAP (Simple Object Access Protocol) bases 
services, with different use cases.  For future extendibility 
to cloud computing, it is in favour of REST based 
services because the services can be distributed to many 
servers without worrying about the client request status 
tracking.   

The data access for REST Services are through “get”, 
“put”, “delete” and “post” methods.  Any data API 
wrapped by one of these methods then becomes a REST 
API. 

There are over one hundred data APIs in the data API 
collection where a small subset of the collection is 
available as REST APIs.  The REST API is deployed and 
managed by a web application server.  For REST service 
API, it is usually specified by URI (Uniform Resource 
Identifier).   

Client Layer 
Client applications communicate with the service 

provider via either data API or service API.  Typically, 
applications can be either desktop based or web based.  
As mobile devices getting more popular, there will be 
more web based accelerator applications in the future; 
therefore, more data API will have REST API support.  
Ideally, client GUI (Graphical User Interface) for both 
desktop and web based applications should be shared; 
however, historically the two types of GUI approaches 
have not been smoothly merged.  JavaFX is the latest Java 
GUI technology which may provide hope for a single 
GUI API for both desktop and web applications.  
Therefore, we select JavaFX for our prototype 
applications to test out the feasibility for unified 
application GUI. 

PROTOTYPE SERVICE 
A REST based prototype lattice and model service has 

been implemented.  For accelerator applications, major 
service technology candidates are EPICS v4 [4] and web 
application server.  Consideration is mainly based on the 
complexity of data structure.  EPICS v4 services support 
EPICS control systems seamlessly with data structure for 
defined in XML syntax.   On the other hand, the REST 
services are intended for web applications on various 
hardware platforms.  For complex data types such as 
Object or List, it is necessary to specify content types as 
application/xml or application/json with the data defined 
in XML or JSON format, respectively.  In principle, both 
EPICS v4 and web services can provide the necessary 
functions for the lattice and model service.  For prototype 
purpose, we chose the Jersey implementation [5] with 
standard J2EE Glassfish platform.  It should be 
straightforward to implement the same service for EPICS 
v4 platform. 

Fig.2 shows a screen snapshot of a REST service 
output example which performs a beamline sequence data 
query.  The URI for this request looks like 

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC152

Software Technology Evolution

ISBN 978-3-95450-139-7

465 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



“http://localhost:8080/modelDBREST/webresources/bea
mlineSequence/name/FE” where “FE” is the short name 
for Front-End beamline, “name” represents the specified 
field for a beamline sequence, and the server is 
“localhost” with port number 8080.  The returned query is 
in standard XML format.  Applications can then handle 
the XML based data with standard XML parser and 
renderer for further calculation or better display. 

 
Figure 2: An example for REST API for query of a 
selected beamline segment.   

Both data API and REST API can provide database 
CRUD (create, retrieve, update, and delete) operations.  
Particularly, the JPA API nicely handles join queries; for 
instance, “delete a lattice” operation cleans up all 
beamline sequences within the lattice, all elements within 
the beamline sequences and all element properties within 
the elements. 

CLIENT APPLICATIONS 
A couple of client applications using either the data 

API or REST API are under development.  Fig 3 shows 
an editable tabbed panel which contains multiple tables; 
the GUI application allows users to view and change 
lattice data saved in the database.  The GUI for this 
application is done with JavaFX technology which is a 
new Java graphical API intended for both desktop and 
web applications. 

 
Figure 3: A JavaFX based user interface as a client 
application for the lattice and model service. 

Another application under development is a model run 
and data display desktop GUI application as shown in 
Fig.4.  This is an example of utilizing XAL [6] 
framework and the latest lattice/model service.  The 
application can run XAL Online Model as well as display 
any saved model data from the database. 

Figure 4: A desktop application for displaying model data.  
The data plot shown is horizontal β-function for FRIB 
linac segment 1. 

CONCLUSION 
A prototype lattice and model service has been 

implemented with a generic database and REST based 
web service.  A couple of client applications are also 
developed.  To accommodate more use cases such as 
physics scripts, it is necessary to extend the present 
service API set.  The REST URI can also be simplified 
with proper wrapper.  Furthermore, performance tuning 
and more applications connecting to the service are 
planned. 

ACKNOWLEDGMENT 
The authors would like to express special thanks to Dr. 

Don Dohan for his contribution to the database design and 
many valuable advices.  The rest of the database 
collaboration team’s help on database related issues as 
well as the compatibility of the lattice and model database 
with the other database domains are also greatly 
appreciated.  Early discussion with Dr. Juhao Wu and 
many other physicists is greatly benefit to the project. 

REFERENCES 
[1] http://www.slac.stanford.edu/grp/cd/soft/aida/ 
[2] P. Chu et al., “Database for Accelerator Modeling”, 

Proceedings of 2013 International Particle 
Accelerator Conference. 

[3] V. Vuppala et al., “Distributed Information Services 
for Control Systems”, WECOBA02, these 
proceedings. 

[4] http://epics-pvdata.sourceforge.net/ 
[5] https://jersey.java.net/ 
[6] J. Galambos et al., “XAL Application Programming 

Structure,” p. 79, Proceedings of 2005 Particle 
Accelerator Conference. 

 

MOPPC152 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

466C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution


