
APPLICATIONS OF TRANSPARENT PROXY SERVERS IN CONTROL
SYSTEMS*

B. Frak, T. D’Ottavio, M. Harvey, J. Jamilkowski, J. Morris, Brookhaven National Laboratory,
Upton, U.S.A.

Abstract
Proxy servers (Proxies) have been a staple of the World

Wide Web infrastructure since its humble beginning.
They provide a number of valuable functional services
like access control, caching or logging. Historically,
control systems have had little need for full-fledged
proxied systems, as direct, unimpeded resource access is
almost always preferable. This still holds true today,
however unbound direct asset access can lead to
performance issues, especially on older, underpowered
systems. This paper describes an implementation of a
fully transparent proxy server used to moderate
asynchronous data flow between selected front-end
computers (FECs) and their clients as well as
infrastructure changes required to accommodate this new
platform. Finally it ventures into the future by examining
additional untapped benefits of proxy control systems like
runtime read-write modifications.

INTRODUCTION
In a perfect world proxies are not only unnecessary, but

are usually frowned upon, as they introduce additional
complexity to already complicated systems. The majority
of the proxy-based systems require some level of
additional configuration – usually in the top most client
layer. Additionally, in ideal conditions performance issues
are non-existent, so any latency or throughput benefits
provided by caching proxies are also rendered irrelevant.
However we do not live in a perfect world and often
proxies are the only cost effective way to accommodate
growing and/or aging accelerator infrastructure.

The idea to implement a truly transparent proxy-server
framework in the Collider Accelerator Department has
been kicked around for quite a while. The concept would
usually come up while trying to tackle performance issues
of one or more struggling front-end computers, which had
been over-utilized and thus were unable to handle
requested loads. Prior to the development of the
transparent proxy system, the solution to these problems
usually involved utilizing custom middleware servers,
which throttled back the backend side utilization by
putting themselves between the clients and the front-end
computers. This is still an acceptable solution, however
it’s not as flexible as its transparent counterpart, as it does
require additional, persistent modifications in the client
layer. For some applications, these changes can be trivial,
for others they require a more substantial time investment.
In neither case it is automatic or transparent.

Reflective Server (RS) has been designed to circumvent
this issue. It features all the benefits of a classic
middleware proxy without introducing additional
configuration entropy to the system.

IMPLEMENTATION
Reflective Server is built on top of the existing Java

Accelerator Device Object (ADO [1]) framework. Its core
contains one or more self-configuring, faux device
objects, which inherit all the external, system visible
features of a true, reflected instance. In essence, this
process creates one twin image of each real ADO, which
resides on another host (usually a FEC). The similarities
are only skin-deep, as the faux instance is just a thin shell
masquerading as the real device object. It knows nothing
about the business logic of the real instance, however it
does know how to forward requests and data to and from
its real counterpart. It, similarly to its twin, resides in a
container that handles all the client-server
communications. The standardized ADO communication
RPC [2] vocabulary is also identical, which means that
from a client perspective, real and faux systems are
indistinguishable. Figure 1 shows both direct and indirect
client access pattern. The clients are completely identical,
and neither one can tell whether or not they are accessing
the data via a proxy or directly.

Figure 1: Direct and indirect access pattern.

Transparency
The above-mentioned transparency is achieved by

modifying the name server records on as needed basis.
The Reflective Server when bootstrapping device objects
modifies their entries in the master Controls Name Server
(CNS) to reflect their new “location”. This record
includes a host name as well as RPC program and version
numbers required for all client server communication.
These records remain unchanged for the duration of proxy

 __

*Work supported by Brookhaven Science Associates, LLC under
contract no.
DE-AC02-98CH10886 with the U.S.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC157

Software Technology Evolution

ISBN 978-3-95450-139-7

475 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

server lifetime and each Reflective Server instance has a
responsibility to restore original entries upon shutdown.
Clients always obtain the location of device objects from
the name server, which means modifying this central
repository is the only way to transparently inject proxy
instances to the live system. Figure 2 shows the actors
participating in name lookup process. Relational database
is used to prepopulate records in CNS. Clients retrieve
desired record based on the supplied name. Once decoded
the record points to a device object’s network location.
Reflective Server(s) can at any time modify the name
server contents, thus rerouting clients to its location.

Figure 2: ADO name lookup.

Runtime Configuration
From a Reflective Server perspective Accelerator

Device Object is a single indivisible entity. As previously
mentioned an ADO server is a collection of these device
objects. Proxy servers by virtue of being an ADO
container adhere to this principle, which means that can
also be configured in variety of ways depending on a
problem they are trying to solve. Two of the most
common configurations are:
• One Reflective Server per FEC – this is by far the

most common scenario. Each server instances maps
and reflects all (usually > 100) ADO instances on a
selected FEC. This scenario is used when trying to
offload a busy front-end computer.

• One Reflective Server for multiple scattered ADO
instances – in this scenario one server maps and
reflects selected ADOs from one or more FECs. This
set-up is used to target a specific, usually very
popular, application, whose instance count is causing
unusually high strain on accessed FECs.

Other configurations ranging from one ADO per server
to all ADOs in the Collider Accelerator Department per
single RS instance are also possible - though highly
improbable.

Synchronous Access
All synchronous requests for dynamic data go through

the proxy servers to the underlying FEC system
unimpeded. Reflective Server routes all synchronous RPC
requests originating from the client-facing layer to the
appropriate ReflectiveAdo instance. This instance

contains exactly one RemoteAdo object responsible for
the FEC-facing communication. It re-encodes the
parameter set and dispatches the request to the appropriate
front-end instance. Results are bubbled up to the calling
client.

Some operations, such as synchronous reads, can
benefit from the built in proxy caching, however this
feature is disabled by default. Immutable data is always
cached in the proxy.

Asynchronous Access
This is the key area where Reflective Server framework

proves to be the most valuable. By positioning itself in
front of backend infrastructure, it essentially removes all
subscribe-publish related scaling issues. This mechanism
relies on proxy instances becoming exclusive clients to
FEC server instances, and thus taking the burden of
handling all, client issued, asynchronous requests onto
itself. Figure 3 shows the default, direct access pattern. In
this case the FEC is responsible for all client connections.
Figure 4 shows the equivalent, indirect access pattern. In
this case the FEC is only dealing with one client, and that
is one Reflective Server instance, which in turn manages
all client issued asynchronous requests.

Figure 3: Direct asynchronous connection request model.

Figure 4: Proxy routed asynchronous connection request
model.

Dealing with the Unexpected
Front-end computer reboots, timeouts, backend

communication failures, and client dropouts – these are
just a few examples of exceptional system states, that
have to be handled by the Reflective Server instances.
The transparent nature of the proxy servers has to be
enforced during these conditions. Clients routed through
RS instances must be notified about any failures in the
same exact way as if they were connected directly to the
FECs.

MOPPC157 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

476C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

Front-end communication loss due to a machine reboot
is by far the most common exceptional state encountered
during normal accelerator operation. Clients receiving
data asynchronously have a number of built in
mechanisms to identify, mark and eventually attempt to
reconnect to a failed host. They rely on both ADO
protocol as well as built-in RPC constructs like
portmapper to accurately judge FEC states. This behavior
has been meticulously tested and it works exceptionally
well in direct server access scenarios. However it does
introduce additional level of complexity to the proxy
servers, as they have to correctly simulate all possible
client-observable states. A full-fledged FEC failure due to
a reset would trigger the following sequence of events in a
previously connected Reflective Server:
• Terminate client facing RPC transport responsible

for the affected front-end machine. We want the
clients to immediately notice that the FEC is no
longer available. The only way to achieve this
without actually killing the server process is to shut
down part of the front-facing infrastructure.

• Enable more aggressive heartbeat mechanism to
speed up recovery process.

• Terminate asynchronous connections to cleanup
publish-subscribe bookkeeping structures. Clients
automatically reissue requests for their entries when
the server comes back online.

• When the FEC is back in service reestablish client-
facing RPC transport and wait for requests.

Other exceptional states are also handled accordingly to
well known and accepted rule-set.

EXTENSIONS
Reflective Server implementation is based on a new

Java ADO platform. This close relationship exposes
additional features native to this platform to ADO
designers and developers. The most important one being
AOP [3] modifier chains, which allow for device object
extensions.

Extension is an advice, which cuts across all sets and
gets (input and outputs) for all Reflective Server
contained device objects. This advice is supplied to the
RS runtime as a class file, which gets weaved with the
existing set of advices already attached to the ADO set
and get methods. The most basic extension point
overrides two methods from the base aspect – one for
input and one for output modification. The former has full
control over the data sent to the slave ADO, while the
latter controls the data shipped back to the clients. This
tight pairing can be utilized by device object developers in
a variety of ways during all stages of a development cycle
as well as in deployed systems.

Extensions point flexibility and ease of deployment
makes them excellent candidates for analyzing application
behavior and mocking up test cases for various system
components. ADO developers can effortlessly create
artificial ADO states as seen by the application by
modifying the data output to the clients. Note that we are

not modifying real ADO values - those remain unaltered.
However clients accessing them through a Reflective
Server with a modifying extension point are oblivious to
that fact. To them modified values are real. Figure 5
shows an example where “floatM” parameter is forced to
a constant value for testing purposes.

Figure 5: Output modifying extension point.

Input modifying extensions are equally useful. Figure 6
shows two simple, yet very powerful examples. The first
one changes the client interface to all current settings on
all reflected ADOs from amps to milliamps. Again we are
not changing the underlying device objects – they will
still receive values in amperes. The second example
removes all write access to the “simple.test” device.

Figure 6: Input modifying extension points.

APPLICATION
Several candidates were identified where FEC loading

was inhibiting the overall system performance. Adding
the Reflective Server layer has improved the FEC
utilization in all cases. Lower throughput cases performed
seamlessly however higher throughput did encounter
intermittent loss of communication.

An example of a low throughput is the Beam Inhibit
Reflective Server instance, which collects a small sample
of data from four different FECs. This system is heavily
used by the Operations, and the proxy server, which has
been deployed for the last two runs encountered no issues.

The Low Level RF FECs are much higher throughput
with each FEC passing ~5GB of data through this layer
per hour. These front-ends were also placed behind a
layer of multiple Reflective Server instances in a pseudo-
operational model. Proxy servers at these data volumes
still require some handholding, as they are not as stable as
their low throughput counterparts. Even with frequent
interventions, which require either a server restart or FEC
reboot, the benefits still outweigh the drawbacks.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC157

Software Technology Evolution

ISBN 978-3-95450-139-7

477 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

FUTURE DEVELOPMENT
At the top of the agenda for future Reflective Server

development is improving reliability. In order to make
this a truly operational system it will need to become
more robust, both in performance and in limiting any
impacts upon clients of the RS when problems do arise.
Once this improvement is in place, we foresee many more
systems making use of this functionality.

REFERENCES
[1] L.T. Hoff and J.F.Skelly, Accelerator Devices at

Persistent Software Objects, Nucl. Instr. and Meth. in
Phys. Res. A 352 (1994),

[2] SUN-RPC RFC, http://www.ietf.org/rfc/rfc1057.txt
[3] G. Kiczales, J. Lamping, C. Lopes, J. Hugunin, E.

Hilsdale, C. Boyapati “Aspect-oriented
Programming”, (1999).

MOPPC157 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

478C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

