
BRINGING CONTROL SYSTEM USER INTERFACES TO THE WEB*
Xihui Chen, Kay Kasemir, ORNL, Oak Ridge, TN 37831, U.S.A.

Abstract
With the evolution of web based technologies,

especially HTML5 [1], it becomes possible to create web-
based control system user interfaces (UI) that are cross-
browser and cross-device compatible. This article
describes two technologies that facilitate this goal. The
first one is the WebOPI [2], which can seamlessly display
CSS BOY [3] Operator Interfaces (OPI) in web browsers
without modification to the original OPI file. The
WebOPI leverages the powerful graphical editing
capabilities of BOY and provides the convenience of re-
using existing OPI files. On the other hand, it uses generic
JavaScript and a generic communication mechanism
between the web browser and web server. It is not
optimized for a control system, which results in
unnecessary network traffic and resource usage. Our
second technology is the WebSocket-based Process Data
Access (WebPDA) [4]. It is a protocol that provides
efficient control system data communication using
WebSocket [5], so that users can create web-based control
system UIs using standard web page technologies such as
HTML, CSS and JavaScript. WebPDA is control system
independent, potentially supporting any type of control
system.

INTRODUCTION
Nowadays, people can do many things in web

browsers, such as live meetings, trading, gaming,
watching movies, and more. The web browser is no
longer a simple browser. It became a convenient platform
for various applications. Web applications have many
advantages over desktop applications: 1) Easy to access.
All you need is a URL; 2) Easy to deploy and maintain;
3) Accessible from anywhere at any time. Web
applications with desktop application characteristics are
called Rich Internet Application (RIA) [6]. Several
technologies have been invented for RIA, such as Flash,
Java Applet and Silverlight, but all these technologies
require separate plugin or client software installed on the
user’s device and even worse, they are not available on
popular iOS devices such as the iPhone and iPad.
Fortunately, HTML5 emerged in recent years as a
standard that has been quickly adopted by all mainstream
web browser vendors. HTML5 based web applications
have maximum cross-browser and cross-device
compatibilities.

HTML5 includes a set of new APIs such as a canvas
element, WebSocket, Drag-and-Drop, WebGL, Web
Worker, Web Storage, Audio, Video, and more. Among
which, the canvas element and WebSocket are most
important for control system UI applications. The canvas

element allows for dynamic, scriptable rendering of 2D
shapes and bitmap images. This makes it easy to
dynamically draw control system UIs in a web browser.
WebSocket provide full-duplex communication channels
over a single TCP connection. Before WebSocket, HTTP
strictly followed the request-response model. For each
update, clients initiated a new connection. The server
could not initiate an update and “push” it to the client. A
number of workarounds have been used to circumvent
this problem, such as polling and long polling. These
required additional header data and increased latency due
to the request-response model. Compared to plain HTTP,
WebSocket is a naturally full-duplex, bi-directional,
single-socket connection. Once the WebSocket
connection is established, the server can send message to
the client at any time and vice versa. This greatly reduces
latency, saves bandwidth and CPU power. Besides, the
WebSocket API is very easy to use because common
functionality such as handshaking, framing, buffering and
encoding are already defined in the specification and
hence implemented by WebSocket API providers. These
merits of WebSocket make them a perfect candidate as the
communication protocol for real-time control system web
applications.

WEBOPI
To bring control system UIs to the Web, the ideal way

is to directly run existing desktop Operator Interfaces in
web browsers without extra effort. This is exactly what
WebOPI does. It seamlessly executes OPI files created by
CSS BOY in web browsers, without any modifications
(see Fig.1).

Figure 1: Comparison of same OPI running in CSS BOY
and web browser.

CSS BOY is a modern graphical operator interface
editor and runtime [7]. It allows users to build control
system GUIs using drag and drop from over 50 widgets. It
is further programmable via Jython or JavaScript. It
provides extension points for extra data sources, custom

* SNS is managed by UT-Battelle, LLC, under contract DE-AC05-
00OR22725 for the U.S. Department of Energy

THCOAAB03 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1048C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

widgets, and scripting libraries.
By reusing the OPI files created from CSS BOY,

WebOPI can immediately inherit the powerful runtime
functionality of CSS BOY and leverage the intuitive
graphical editing capabilities of the BOY OPI Editor.
Furthermore, WebOPI and CSS BOY are 90% single
sourced using Eclipse Remote Application Platform
(RAP) technology [8]. This allows continuous
synchronized evolution of CSS BOY and the WebOPI,
which means newly added features of CSS BOY are
immediately available within WebOPI.

WEBOPI ARCHITECTURE
WebOPI is built on Eclipse RAP [8], which provides

the capability of bringing Eclipse RCP to the web by
reusing most of the existing RCP code. It achieves this by
replacing the Standard Widget Toolkit (SWT) layer of
RCP with the Remote Widget Toolkit (RWT) layer (see
Fig.2).

Figure 2: RAP architecture.

RWT code resides on both the server and the client
side. Underneath, it uses HTTP as the communication
protocol. On the server side, its Java code provides the
same interfaces as SWT, so existing SWT application
code can also run on RWT. On the client side, it utilizes
the qooxdoo JavaScript library for native widgets, and
HTML5 canvas elements for custom drawing. The client
side code is responsible for the representation and event
detection, while the server side code is responsible for
processing the application logic. For example, when the
user clicks a button in their web browser, the client code
sends the click event to the server. Then the server side
will process the event and reply back to the client with a
result. If there are updates that the server should “push” to
the client, it uses the HTTP long polling mechanism as
mentioned before.

While RAP provides a convenient single-source
programming model, implementers need to be aware of
key differences between desktop and web applications.
For example, each desktop application has a single user,
while web applications allow multiple concurrent users.
This requires the server to manage one UI thread life
cycle per user. The server needs to verify if the user is
still online, and properly dispose related resources once
the user closes the web session. This is achieved by
regularly checking for the long polling signal from each

client. This and other small differences between SWT and
RWT are handled via suitable Eclipse fragment or
extension mechanisms, while the bulk of the BOY code is
shared between the RCP and the RAP implementation.

WEBOPI LIMITATIONS
On one hand, the RAP single sourcing programming

model provides tremendous benefits: The WebOPI can
reuse existing BOY OPI files. On the other hand, there are
limitations.

First of all, most of the OPI logic is executed on the
server. While this reduces the client CPU load – an
important consideration for small, mobile devices,
including cell phones - it limits the maximum number of
clients for each server. This issue is negligible for
specialized control system web applications, for example
related to a specific subsystem, where the number of
concurrent users is small, and the advantage of easily
creating a common BOY display for both local and web
use by far more important.

On the other hand, the WebOPI is less suited for control
system displays with a broad, site-wide audience, for
example an accelerator status overview inspected by most
everybody each morning.

Secondly, the RWT network traffic is not optimized for
control system data. For example, on each update of a
gauge widget, the server needs to send all drawing
information to the web browser, instead of only the value
that needs to be displayed in the gauge. We already
mentioned that the long polling mechanism requires
additional header data. HTTP compression can be enabled
to reduce the network traffic about tenfold, albeit at the
same time increasing the CPU load on both server and
client.

While the WebOPI is responsive enough on desktop
web browsers, the combination of these disadvantages
mean that only comparably simple displays are practical
on mobile devices. Higher performance control system
web UIs require a more efficient protocol, optimized for
control system data, which is the motivation for
developing WebPDA.

WEBPDA
WebPDA is a protocol for efficient control system data

communication based on WebSocket. As explained in the
introduction, WebSocket has many advantages over
HTTP for real-time web applications. However,
WebSocket is a general protocol for transferring text or
binary bytes. It is not easy to directly use it for control
system web applications. WebPDA is an application level
protocol and API that allows users to build control system
web applications without dealing with communication
details. The protocol defines and handles the
communication sequence, message encoding and
decoding, buffering, security, and client life cycle
management. It further provides an abstract data layer on
the server side so that users can extend it to arbitrary
control systems.

Proceedings of ICALEPCS2013, San Francisco, CA, USA THCOAAB03

User Interfaces and Tools

ISBN 978-3-95450-139-7

1049 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

The Protocol
In WebPDA, data is transferred as values of Process

Variables (PV), using PV as defined in the EPICS [9]
toolkit. The value type of a PV can be an arbitrary data
structure.

The WebSocket communication between server and
client is straightforward (see Fig. 3). Firstly, the client
sends a regular HTTP request to the server. If the server
allows, the HTTP connection is upgraded to a WebSocket
connection. After the connection is established, the client
sends a login command with user name and password to
the server. On success, the server will mark the client as
logged in. Otherwise, it will forbid further commands
from this client. The client can send a “Create PV”
command to the server. The server will create the PV and
try to connect to that PV in the underlying control system,
i.e. EPICS. Once the PV is connected, it will notify the
client that the PV is connected, and from now on send
value changes to the client. The client can send a “Close
PV” command to server when the PV is no longer of
interest. If the client connection is unexpectedly lost, the
server will detect this and dispose related resources.

Figure 3: Typical communication sequence of WebPDA.

Since both server and client maintain the status and
value of each PV, it is not necessary to transfer the whole
data structure for each value update. Instead, the protocol
only transfers the changed fields of the data structure. For
example, the PV metadata such as units, precision,
display limits, alarm limits is only transferred when it
changes. Most PV updates are thus limited to network
transfers of the latest value, timestamp and alarm status.

Client commands and messages from the server to the
client are generally transferred as JSON [10] text, because
JSON is very flexible and easily parsed in client-side
JavaScript. Value updates, however, are transferred in a
binary format, because a binary format is most compact
and can also preserve the precision of floating point
numbers. Overall, this design provides us with maximum
efficiency and also flexibility.

Server Side Implementation
The WebPDA protocol does not limit implementation

techniques for either server or client. In principle, any
languages that support WebSocket can all be used to
implement servers or clients.

Currently, we provide a server side implementation
based on JSR356 [11]. JSR356 is a standard WebSocket
Java API. It is currently supported by Glassfish 4 and
Tomcat 8. The WebPDA core implementation is actually
layered to remain independent from a specific WebSocket
API, fundamentally allowing an alternate server side
implementation, for example for Jetty.

The server side library is decoupled into an abstract
data interface layer and a specific implementation layer,
so the data interface is independent from its
implementations. This allows extending WebPDA to
arbitrary data sources. Currently, we provide
implementation for the PVManager [12], which already
has support for EPICS V3, V4, simulated PVs, local PVs
and formulas. PVManager also allows extension to
arbitrary control systems. User can create a new data
source either on top of the abstract WebPDA data
interface layer or on top of PVManager. The benefit of
creating new data source on top of PVManager is that it
already implemented a set of value types, queuing,
throttling, encoding and corresponding decoding code on
the client side.

Client Side Implementation
While the WebPDA client side can be implemented in

any WebSocket-aware language, we chose JavaScript as
it is currently predominant in web browsers.
Corresponding to the server design, the client side also
has two layers: an abstract layer that handles common
communications, and a specific implementation layer that
decodes the data corresponding to the server side
implementation layer. If new data sources added to the
server side are based on the PVManager, no additional
work is needed for the client side.

The client side API hides protocol details from users,
allowing users to focus on the PVs when writing web
applications (see Fig 4).

Figure 4: WebPDA client side JavaScript API.

THCOAAB03 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1050C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

WebPDA Widgets
To simplify the process of building web browser

control system UIs, WebPDA also pre-wrapped some
widgets that allow users to display the value of a PV
inside a widget via a single line of code (See Fig 5). In a
general HTML “<div>” element, users only need to
specify the element class as “webpda-widgets”, select the
widget type, for example a gauge, and specify the desired
PV name. The widget will automatically connect to the
PV and display its value in real-time. Based on the widget
type, PV metadata such as display limits will determine
the widget’s range; the alarm status may affect the widget
colors, and so on. Users can also wrap their own widgets
as WebPDA widgets in a separate JavaScript library.

Figure 5: Pre-wrapped WebPDA widget demo.

SECURITY
Internet web applications are potentially exposed to

anybody, anywhere in the world. Consequently, there
may be a need to control access to WebPDA data. For
authentication, both the WebOPI and the current
WebPDA implementation support the Java Authentication
and Authorization Service (JAAS), allowing integration
with existing site-wide authentication infrastructures such
as LDAP. For simpler, standalone installations, system
administrators can use a server-side text file to configure
users and their passwords.

The handling of authorization differs between the
WebOPI and WebPDA. For the WebOPI, the server
executes the application logic. PV read/write permissions
are controlled by the underlying control system, such as
EPICS Channel Access Security, regardless of the web-
based user. While WebPDA can similarly rely on the
security mechanism of the underlying control system, it
allows additional configuration for each web-based user,
either from a server-side file or LDAP.

To protect transferred data from man-in-the-middle
attacks, TLS [13] can be used to encrypt the
communication for both HTTP and WebSocket.
Encrypted HTTP URLs start with https:// and encrypted
WebSocket URLs start with wss://.

COMPATIBILITY
Given the plethora of mobile devices, operating

systems and web browsers available on the market, it is
important for control system web applications to be
compatible with the major of devices and browsers.
Fortunately, HTML5 as a popular standard has been
quickly adopted by all mainstream browser vendors. As
we write this article, both WebOPI and WebPDA are
compatible with the latest versions of mainstream web
browsers. Only the default Browser on Android devices
may exhibit incompatibilities, but they are resolved by
installing a separate Chrome, Firefox or Opera browser on
the device.

SUMMARY
This article introduced two technologies that facilitate

the goal of bringing control system UIs to the web. They
have different characteristics, tailored for different use
cases. The WebOPI makes it extremely easy to build rich
control system web UIs, but its efficiency limits the
number of simultaneous users. WebPDA provides
maximum efficiency, but requires certain HTML and
JavaScript programming skills to implement the UI. A
future tool that generates WebPDA UIs using drag and
drop as in the CSS BOY display editor would combine
the best of both approaches.

To the end user, either technology provides access to
control system data via a simple web URL on almost any
web-connected device.

REFERENCES
[1] http://en.wikipedia.org/wiki/HTML5
[2] http://sourceforge.net/apps/trac/cs-studio/wiki/webopi
[3] https://sourceforge.net/apps/trac/cs-studio/wiki/BOY
[4] http://webpda.org/
[5] http://en.wikipedia.org/wiki/WebSocket
[6] http://wikipedia.org/wiki/Rich_Internet_application
[7] X. Chen, K. Kasemir, “BOY, a modern graphical

operator interface editor and runtime”. Proceedings
of 2011 Particle Accelerator Conference, New York,
NY, USA.

[8] http://eclipse.org/rap/
[9] http://www.aps.anl.gov/epics/
[10] http://www.json.org/
[11] http://jcp.org/en/jsr/detail?id=356
[12] http://pvmanager.sourceforge.net/
[13] http://wikipedia.org/wiki/Transport_Layer_Security

Proceedings of ICALEPCS2013, San Francisco, CA, USA THCOAAB03

User Interfaces and Tools

ISBN 978-3-95450-139-7

1051 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

