
INTEGRATION OF WINDOWS BINARIES IN THE UNIX-BASED RHIC
CONTROL SYSTEM ENVIRONMENT*

P. Kankiya, J. Jamilkowski, L. T. Hoff, BNL, Upton

Abstract
Since its inception, the RHIC control system has been

built on top of UNIX or LINUX and implemented
primarily in C++. Sometimes equipment vendors include
software packages developed in the Microsoft Windows
operating system. This leads to a need to integrate these
packaged executables into existing data logging, display,
and alarms systems. This paper describes an approach to
incorporate such non-UNIX binaries seamlessly into the
RHIC control system with minimal changes to the
existing code base, allowing for compilation on standard
LINUX workstations through the use of a virtual
machine. The implementation resulted in the successful
use of a Windows dynamic linked library (DLL) to
control equipment remotely while running a synoptic
display interface on a LINUX machine.

INTRODUCTION
Large enterprises that involve the integration of

multiple engineering groups such as the Collider
accelerator Department at BNL, rely on a consolidated
control system framework. It is the primary responsibility
of the control system to provide an interface for device
management and data acquisitions.

With the rapid growth in software development
techniques, it is not uncommon for merchants supplying
control equipment to also provide software support in
form of a packages like portable executable(PE) library
files - the Windows equivalent of ELF files. It is time
consuming to reproduce these PE files with in house
code t on Unix platforms. I some cases this is not even an
option. There needs to be a technique to take advantage of
such pre-built programs without rewriting the complete
interface for each target platform.

In this paper we propose a technique that can be used to
incorporate Windows executables into a Unix-based
control infrastructure, while maintaining compatibility
with our legacy suite of applications used for archiving,
logging, storage and alarming.

EXISTING COMPONENTS OF
SOFTWARE DEVELOPMENT

The RHIC control system consists of two physical
levels: console level computers and front-end computers
(FECs). FECs provide access to accelerator equipments.

A code generation mechanism called “adogen” facilitates
the development of ADO code and associated database.

For the scope of this paper, the flow of data at RHIC
from a device to the user consists of four stages. The
control equipment tier represents the hardware devices in
use at accelerator complex. The rudimentary device
access to such equipment is provided by the ADO
classes. The Accelerator Device Object (ADO) is
implemented as a C++ class [1] that contains a data
structure and full set of actions or "methods" that are
needed to control and monitor the accelerator device(s).
To publish this data across controls applications, an
interface layer known as adoIfServer has been
implemented (see Figure 1). The ADO protocol
implemented by the adoIfServer serves as the RHIC
Controls System API for application programs. The
communication between ADO class and the client
applications is achieved through client-server model
utilizing TCP/IP communications[2].

Figure 1: SW architecture of RHIC control system.

The latter two stages refer to multiple applications
which make use of information made addressable via
ADOs. These applications are responsible for
fundamental data interaction. Example of these tools
include parameter Editing Tool (PET), live data graphing
through the General Purpose Monitor (GPM)
application,and logged data can be plotted through the
LogView application. Console software has been
primarily developed in the C++ language.

* Work supported by Brookhaven Science Associates, LLC under
Contract No. DE-AC02-98CH10886 with the U.S. Department of
Energy.

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC023

Control System Infrastructure

ISBN 978-3-95450-139-7

1135 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

PROCESS OF INTEGRATION OF
WINDOWS BINARIES

For the purpose of combining of foreign binaries into
our control systems, we needed to replicate the software
components in our existing development process to the
foreign OS host , windows XP in our case.

The first step was to install a cross-platform compiler
utility. Cross-compilation is the technique of running
programs on a “host” system to generate object code for a
different “target” system. We have used here an efficient
and highly reliable industry solution called Cygwin[3].

Cygwin is a Unix-like environment and command-line
interface for Microsoft Windows. Cygwin provides native
integration of Windows-based applications, and other
system resources with software tools available in a UNIX
environment.

Cygwin permits installing inetd, syslogd, sshd, Apache,
and other daemons as standard Windows services,
allowing Microsoft Windows systems to emulate Unix
and Linux servers. It consists of a library that implements
the POSIXx system call APIs utilizing Win32 system
calls, and a GNU development tool chain (including GCC
and GDB) to allow software development.

We also needed to install a remote version control
system, which was required to the suite of libraries and
applications that RHIC control system is founded upon.
To provide access to this vast code base, we install the
ClearCase Remote Client (CCRC). This product
provides access to the IBM Rational® ClearCase®
version control system from various network connections
over multiple operating systems. With the help of CCRC
it is possible to access resources in remote repositories
and load them into local Rational ClearCase “web views”
as ordinary files and directories under Rational ClearCase
source control.

Synchronizing the existing Linux code repository with
the remote client repository is easily performed with the
CCRC[4] user interface. Once synchronized, it is
important to link Cygwin to the versioned objects present
in Clearcase environment. This is easily accomplished
using Unix links.

Before starting software development the standard
library code such as adogen and Cdev[5] must be built.

To build an application that includes a Windows shared
object library (eg a .DLL or .lib file) provided by the
vendor, makefiles do not need to be modified as long as
the DLL is in the search path. Note that the ADO specific
makefile should make sure to include the pertinent header
file.

Henceforth, an ADO server program can be coded on
Windows workstation in the exact same fashion as a
control system developer uses to code in his or her
endemic Linux development environment. Once
operational, this ADO server should be registered with the

portmap. This will attach the running program to the list
of aodIfServer clients[6].

Now, since the interface between the vendor's software
library and a main control room user is an ADO, we can
successfully compound this application with every utility
that employs ADOs as their elementary inputs. In other
words a synoptic display can be used to control
parameters, the data received can be logged and alarms
could be submitted to the alarm system without any
tweaks in the already implemented code for these
applications.

PRACTICAL IMPLEMENTAION
To demonstrate the integration of a Windows

executable, a test bench was set up to simulate Windows
Xp OS, using a virtual machine[7]. To validate suffested
scheme, a program called SimpleMan was compiled
under Cygwin. This is standard test program which is
used at RHIC control systems as a demo tool for testing
ADO features in conjunction with user interface tools.
This successfully demonstrated the execution of a
Windows software object from a Unix file system.

Other Test Cases with Limitations
To demonstrate the use of above methodology, we

designed a control interface for a Laser assembly. This
laser, as supplied by the manufacturer, is attached to a PC
hosting the Windows XP operating system. Following the
industry trend this set-up was also provided with a
software package constituting a custom application
designed to perform Laser related operations and a
shared object library in the form of a Windows DLL.

The issue with this configuration was that the custom
application could not have been used to incorporate laser
operations into our Controls System. With help of
function prototypes provided with the DLL, it was
relatively easy to write an ADO class

In process of developing an interface to this device, it
was discovered that the DLL has a dependency on the
Microsoft Visual Studio suite. For instance, the event-
loop or the message dispatcher, is inherently implemented
by the MFC library of visual studio framework[8]. A
method to avoid these dependencies need to be
investigated.
 A second situation that could benefit from suggested
technique development of control software for a laser
wavelength meter which was packaged with a set of APIs
written in Windows and packaged as a DLL.

This test case highlighted another concern in reference
to the proposed method. It is possible to run into
compiling issues due to unresolved name mangling when
trying to export the DLL symbols. As a result, the
compiler will generate the “unresolved external symbol”
error message. A proven solution to surpass this error
needs to be devised[9].

THPPC023 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1136C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Infrastructure

LIMITATIONS
Windows systems will typically not have access to

Linux file systems outside version controlled
environment. The RHIC controls system uses the
relational database SYBASE to store, among other things,
configuration data. Application software of all kinds
routinely access the SYBASE database, to retrieve such
data. Access is provided via a combination of vendor-
supplied software libraries, and in-house developed
libraries. The latter has been optimized and specialized
for the LINUX environment, and provides added value in
functionality such as failing over to a redundant backup
SYBASE server. However, these libraries are not readily
ported to the Windows environment.

CONCLUSION
A well defined method to incorporate a Windows

portable executable file into existing Unix/Linux braced
control infrastructure has been laid out. The approach
highlights the use of a cross compiler and a
supplementary version control system on a remote
platform. This will aide in successfully producing an
executable program on an external target platform which
can be helpful in integrating equipment control with
native data acquisition, logging, archiving and alarming
tools. The outstanding issues of the solution have been

listed out. The outstanding issues described here must be
resolved before further attempts to integrate Windows
binaries in RHIC Controls System are made.

REFERENCES
[1] D.S. Barton, et al., “The RHIC Control System”,

Nuclear Instruments and Methods in Physics
[2] L.T. Hoff, J.F. Skelly, “Accelerator devices at

persistent software objects”
[3] “http://www.cs.rpi.edu/~magdon/courses/cs1/labs/la

b1/cygwin.pdf”
[4] “https://pic.dhe.ibm.com/infocenter/cchelp/”
[5] J. Chen et al., “CDEV: An Object-Oriented Class

Library for Developing Device Control
Applications”, Proc. ICALEPCS’95

[6] S. Sathe, L.T. Hoff, T.Clifford, “Client Server
design and implementation issues in accelerator
Control system environment”, Brookhaven
National Lab.

[7] Tal Garfinkel, Mendel Rosenblum, “A Virtual
Machine Introspection Based Architecture”,
Computer Science Department, Stanford University.

[8] “Visual C++ - Exploring New C++ and MFC
Features in Visual Studio 2010”,
Msdn.microsoft.com. Retrieved 2012-11-19.

[9] http://cygwin.com/cygwin-ug-net/dll.html

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC023

Control System Infrastructure

ISBN 978-3-95450-139-7

1137 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

