
OPERATING SYSTEM UPGRADES AT RHIC*

S.Binello†, J.Laster, R.Katz, J.Piacentino, A.Fernando
Collider-Accelerator Department, BNL, Upton, NY, USA

Abstract
Upgrading hundreds of machines to the next major

release of an Operating system (OS), while keeping the
accelerator complex running, presents a considerable
challenge. Even before addressing the challenges that an
upgrade represents, there are critical questions that must
be answered. Why should an upgrade be considered? (An
upgrade is labor intensive and includes potential risks due
to defective software.) When is it appropriate to make
incremental upgrades to the OS? (Incremental upgrades
can also be labor intensive and include similar risks.)
When is the best time to perform an upgrade? (An
upgrade can be disruptive.) Should all machines be
upgraded to the same version at the same time? (At times
this may not be possible, and there may not be a need to
upgrade certain machines.) Should the compiler be
upgraded at the same time? (A compiler upgrade can also
introduce risks at the software application level.) This
paper examines our answers to these questions, describes
how upgrades to the Red Hat Linux OS are implemented
by the Controls group at RHIC, and describes our
experiences.

INTRODUCTION
Operating system upgrades are labor intensive,

disruptive and almost always come with incompatibilities
and software bugs. Deciding when to perform OS
upgrades at RHIC has been an evolving process. On the
one hand, there is the desire to maintain a stable
functioning controls system. On the other hand, there is
the desire for new features and capabilities that come with
new versions of an OS.

Operating system upgrades come in two flavors. The
first is a major OS upgrade, where significant new
features and revisions are released. At RHIC, where we
use the Linux OS distributed by Red Hat, major releases
are reflected by version number changes, such as Red Hat
Enterprise Linux(RHEL)5 to RHEL6. The second type
consists of updates to the current OS version that mainly
consist of bug fixes, security fixes, and minor
enhancements. For Red Hat, this is reflected by minor
version number changes such as RHEL6.1 to RHEL6.2.

OS UPGRADES AND UPDATES AT RHIC
The Controls group is responsible for upgrading several

hundred Linux machines at RHIC. Over time, we have
mostly reached a consensus that major upgrades to the OS
will be performed based on Red Hat's schedule for life

cycle support. In the past, this has been a rather
challenging schedule, in that its basic support phase
(called Production 1) was limited to four years. Lately,
that schedule has been relaxed a little, as Red Hat has
extended its basic support phase to five and one-half years
[1]. The Production 1 phase differs from subsequent
phases in that it includes software enhancements and
support for new hardware.

Mindful of the inherent risks involved in adopting a
new major OS release, we have taken the position that we
will not upgrade to a new version within the first year of
its introduction.

Aside from major OS upgrades, Red Hat also makes
minor releases, as well as continuous asynchronous
security and bug fixes, called erratas. Red Hat provides
software that has the capability to install these erratas
automatically when they become available. However, to
maintain strict control over our update schedule, we have
decided not to use this feature. Instead, we update
machines annually to coincide with the RHIC shut-down.
As we intend to run the whole year with a particular OS
update, and unlike major OS upgrades, our policy has
been to install the most recent minor release, and to
incorporate the erratas at that time.

Our goal is to perform no updates or upgrades to our
systems while the accelerators are operational. However,
we make an exception for bug fixes that correct problems
that we actually encounter, and lately we have also
decided to include security erratas deemed critical by
ITD. Our intention is to limit disruptions, and reduce the
possibility of introducing problematic software while the
accelerators are running. Whether it's a major OS upgrade
or simply an update, it is a rare occurrence where it has
not also introduced bugs that have caused a wide range of
disruptions, running the gamut from kernel crashes, to
NFS issues, to desktop difficulties. Just recently a
relatively innocuous application like the Nautilus file
browser was found to be causing major performance
problems with our NAS file server.

Upgrade Schedule
In an effort to extend the amount of test time, all

upgrades and updates are scheduled as early as possible
during the summer months when the accelerators are not
running. To ensure that we always have a copy of the
software packages that are installed on our systems, the
packages are retrieved from Red Hat and stored in a local
repository. This repository is frozen once testing is
completed and upgrades begin.

As mentioned earlier, exceptions are made in the event
that we experience problems with a particular software

__

*Work performed under Contract Number DE-AC02-98CH10886 with
the auspices of the US Department of Energy.
† sev@bnl.gov

THPPC024 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1138C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Infrastructure

package. This has occurred several times, typically right
after an upgrade. Sometimes these upgrades can be
limited to a subset of machines that are specifically
affected by the problem at hand.

How Encompassing Should The Upgrade Be?
In general, we attempt to upgrade most of our machines

to the same OS level. However, there are certain
machines that we do not necessarily always upgrade. We
have several classes of Linux machines that serve specific
functions:

· Developer Consoles - used by individuals to develop
software

· Process Servers - used to run controls server
software such as loggers and managers.

· Main Control Room (MCR) Consoles – multi-
headed displays used by operators in MCR.

· System Servers - used to run system services such as
NIS, NTP, DHCP, FTP.

· Archive Servers - NFS servers that store historical
data.

· Field Consoles - used throughout the complex to run
Controls applications

· Assorted servers with dedicated functions - such as
NX, compute, compile, version control (ClearCase).

Note, our main file servers are Network Attached
Storage (NAS) devices that are not included in the Red
Hat OS Upgrade. However, they too are usually upgraded
by the vendor during the same time period.

In general, we upgrade all machines except for system
and archive servers. System servers perform limited, but
highly critical functions. Archive servers are NFS file
servers that contain accelerator data logged over the
years.

The consensus has been that these types of servers
would not benefit much by an OS upgrade, and may
actually suffer from the introduction of a bug that could
have a widespread negative impact. However, it does
mean that we should monitor the release of software
specific to the functionality of these machines, and do a
cost analysis to determine whether an upgrade would be
beneficial. For example, our archive servers may benefit
from the availability of NFS 4 with the release of
RHEL6.

 Though we prefer to upgrade the remainder of our
machines to the same OS level, this has not always been
possible. Running more than one major version of an OS
creates some challenges in that applications built on the
newer version do not always run on the older one, due to
the unavailability of newer versions of libraries such as
glibc and other standard C and C++ libraries.

This last year we operated in just such a heterogeneous
environment, where some machines ran under RHEL5
while others ran under RHEL6. Instead of creating two

versions of an application, one for each version of the OS,
we created an environment where applications were
strictly run from only RHEL6 machines, where both old
and new applications were able to run. In addition, as we
still supported the building of executables on RHEL5
machines, we also needed to maintain separate
development environments.

Though we ran successfully with this configuration for
almost a year, it did create additional complexities and
some confusion. So, in general we would try to avoid this
situation, but it is an option.

Compiler Upgrades
 Included with OS upgrades and updates are equivalent

upgrades and updates to the associated compiler. A
compiler upgrade can also introduce risks at the software
application level. Though the Controls group has been
transitioning software development to JAVA, the bulk of
our software is still in C++.

Compiler upgrades and related libraries, mirror OS
upgrades in that major version changes (ex: gcc3 to gcc 4)
are associated with major Red Hat OS releases (ex:
RHEL5 to RHEL6), while minor updates are released
along with OS updates.

In the past, Red Hat has facilitated the transition to a
new OS by providing a compatibility compiler package
that allowed the migration to the new OS without having
to migrate to the new compiler as well. Though this still
involved some tailoring of our environment to use these
packages, it proved to be an extremely convenient way
for us to tackle two interdependent, time-consuming, and
complex upgrades. As of RHEL6, Red Hat no longer
supports this migration path, instead it now backports the
new compiler so that migration and testing needs to be
started on the older OS.

During our last upgrade to RHEL6 from RHEL5, both
compiler and OS were upgraded at the same time. This
was not an ideal situation, but was necessitated by Red
Hat's new policy. Our approach, in this case, was to
upgrade machines that were not used for software
development in parallel to testing and upgrading the
compiler.

During the transition from one major compiler release
to the next, we temporarily create two environments, so as
to allow development under either compiler. This means
separate build commands, shared object libraries and
executables, with the logic to automatically find and
select the appropriate ones.

A Typical Upgrade Path
As indicated earlier, not all our upgrades necessarily

follow the same path. But, based on current Red Hat
policy we expect that going forward the first task will be
to upgrade and test the compiler and then upgrade the OS.
This is actually an order we prefer, and have followed
several times already.

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC024

Control System Infrastructure

ISBN 978-3-95450-139-7

1139 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

An OS upgrade to our controls systems normally
begins with an upgrade to just one machine. From this
machine, an environment is set up to allow compiles
while also coexisting with the previous version of the OS.
Once this environment is established, all libraries and
applications are recompiled to address any
incompatibilities with the new compiler and libraries. A
small but critical subset of the applications is released to
a specific location where they can be accessed by any
machine that is also upgraded to the new OS.

Once a test machine has been successfully converted,
additional developer consoles from the Controls group are
upgraded. In this manner, the set of applications built and
exercised under the new OS slowly grows naturally as
software developers build and release applications. No
attempt is made to build and release all applications at
once under the new OS. Instead, there is a natural
migration to the new executables as developers work on
them. In the end, the set of Controls executables will be a
mix of applications built under older versions of the OS,
and those recently built under the new version. With this
approach it is quite possible to have a set of executables
that have been built over a wide range of versions of the
operating system.

 After a period of testing within the Controls group, the
upgrade is expanded to include desktops used by
physicists and consoles used in the MCR. In this way we
try to constrain and resolve upgrade issues within the
Controls group, before they are encountered by the wider
user community. The one time that we did not follow this
approach we found that many of our users struggled with
various desktop issues.

During this transition period there is an ongoing
parallel effort to upgrade a few sample machines from
each of the various categories described above, especially
MCR consoles and process servers. Albeit, as we are in
shut-down mode these machines are not as heavily used
as they would be normally, but the basic functionality can
still be tested.

 After some period in which the Controls group has
actively worked in the new desktop environment, built,
released and executed applications under the new OS, and

tested sample machines, a full-fledged migration to the
new OS is initiated.

Testing
For the most part, our approach to testing entails

upgrading and testing sample machines and actually
employing them for the purpose for which they are
intended. We then gradually expand the number machines
that are upgraded from each class.

At BNL there are several smaller accelerators within
the RHIC complex whose start-up is scheduled to occur
much earlier than RHIC. This provides for a natural,
phased-in, approach to stress test the upgraded systems.

About a month before RHIC becomes operational, a
dry-run is performed where applications are tested, and
implicitly this also serves to test the underlying system
upgrades. Tests also exist to ensure that consoles in MCR
are configured and operating correctly. Specific attention
is paid to the desktop environment.

SUMMARY
 Operating system upgrades are complex, time

consuming, and are labor intensive. More often than not
they introduce defective or incompatible software. Our
approach to OS upgrades and updates has been evolving
over the years. We continue to refine our approach to
balance the need for newer software with the need to
maintain a stable, functioning controls system. Our
upgrade schedule is mostly influenced by Red Hat's life
cycle support schedule. To limit risks we delay adoption
of any new major release for at least a year, and perform
updates annually. To limit disruptions we perform OS
upgrades or updates only during the summer, when the
accelerators are not operational. Looking forward, we
expect to make use of virtual machines to facilitate the
upgrade process.

REFERENCES
[1] Red Hat web site,

https://access.redhat.com/support/policy
/updates/errata

THPPC024 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1140C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Infrastructure

